File: t_ProbabilitySimulationAlgorithm_std.cxx

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (141 lines) | stat: -rw-r--r-- 4,555 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
//                                               -*- C++ -*-
/**
 *  @brief The test file of ProbabilitySimulationAlgorithm class
 *
 *  Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"

using namespace OT;
using namespace OT::Test;

static Bool stop(void * )
{
  std::cerr << "-- stop?" << std::endl;
  return false;
}

static void progress(Scalar percent, void * )
{
  std::cerr << "-- progress=" << percent << "%" << std::endl;
}

int main(int, char *[])
{
  TESTPREAMBLE;
  OStream fullprint(std::cout);


  try
  {
    /* We create a numerical math function */
    Description input(4);
    input[0] = "E";
    input[1] = "F";
    input[2] = "L";
    input[3] = "I";
    SymbolicFunction myFunction(input, Description(1, "-F*L^3/(3*E*I)"));

    UnsignedInteger dim = myFunction.getInputDimension();
    /* We create a normal distribution point of dimension 1 */
    Point mean(dim, 0.0);
    mean[0] = 50.0; // E
    mean[1] =  1.0; // F
    mean[2] = 10.0; // L
    mean[3] =  5.0; // I
    Point sigma(dim, 1.0);
    IdentityMatrix R(dim);
    Normal myDistribution(mean, sigma, R);

    /* We create a 'usual' RandomVector from the Distribution */
    RandomVector vect(myDistribution);

    /* We create a composite random vector */
    CompositeRandomVector output(myFunction, vect);

    /* We create an Event from this RandomVector */
    ThresholdEvent myEvent(output, Less(), -3.0);

    Collection<WeightedExperiment> experiments(1, MonteCarloExperiment());
    // qmc
    experiments.add(LowDiscrepancyExperiment());
    // importance sampling
    mean[0] = 4.99689645939288809018e+01;
    mean[1] = 1.84194175946153282375e+00;
    mean[2] = 1.04454036676956398821e+01;
    mean[3] = 4.66776215562709406726e+00;
    Normal myImportance(mean, sigma, R);
    experiments.add(ImportanceSamplingExperiment(myImportance));
    // randomized qmc
    LowDiscrepancyExperiment lde;
    lde.setRandomize(true);
    experiments.add(lde);
    // randomized lhs
    LHSExperiment lhse;
    lhse.setAlwaysShuffle(true);
    experiments.add(lhse);

    for (UnsignedInteger i = 0; i < experiments.getSize(); ++ i)
    {
      RandomGenerator::SetSeed(0);

      /* We create a Monte Carlo algorithm */
      ProbabilitySimulationAlgorithm myAlgo(myEvent, experiments[i]);
      myAlgo.setMaximumOuterSampling(250);
      myAlgo.setBlockSize(4);
      myAlgo.setMaximumCoefficientOfVariation(0.1);
      myAlgo.setProgressCallback(&progress);
      myAlgo.setStopCallback(&stop);

      fullprint << "algo=" << myAlgo << std::endl;

      /* Perform the simulation */
      myAlgo.run();

      /* Stream out the result */
      fullprint << "algo result=" << myAlgo.getResult() << std::endl;
      fullprint << "Confidence length at level 99%=" << myAlgo.getResult().getConfidenceLength(0.99) << std::endl;
      fullprint << "Confidence length at level 80%=" << myAlgo.getResult().getConfidenceLength(0.8) << std::endl;
      fullprint << "Probability distribution=" << myAlgo.getResult().getProbabilityDistribution() << std::endl;

      /* Use the standard deviation as a stopping rule */
      myAlgo = ProbabilitySimulationAlgorithm(myEvent, experiments[i]);
      myAlgo.setMaximumOuterSampling(250);
      myAlgo.setBlockSize(4);
      myAlgo.setMaximumCoefficientOfVariation(0.0);
      myAlgo.setMaximumStandardDeviation(0.1);

      fullprint << "algo=" << myAlgo << std::endl;

      /* Perform the simulation */
      myAlgo.run();

      /* Stream out the result */
      fullprint << "algo result=" << myAlgo.getResult() << std::endl;
      fullprint << "Probability distribution=" << myAlgo.getResult().getProbabilityDistribution() << std::endl;
    }
  }
  catch (TestFailed & ex)
  {
    std::cerr << ex << std::endl;
    return ExitCode::Error;
  }


  return ExitCode::Success;
}