1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
// -*- C++ -*-
/**
* @brief The test file of ProbabilitySimulationAlgorithm class
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
static Bool stop(void * )
{
std::cerr << "-- stop?" << std::endl;
return false;
}
static void progress(Scalar percent, void * )
{
std::cerr << "-- progress=" << percent << "%" << std::endl;
}
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
/* We create a numerical math function */
Description input(4);
input[0] = "E";
input[1] = "F";
input[2] = "L";
input[3] = "I";
SymbolicFunction myFunction(input, Description(1, "-F*L^3/(3*E*I)"));
UnsignedInteger dim = myFunction.getInputDimension();
/* We create a normal distribution point of dimension 1 */
Point mean(dim, 0.0);
mean[0] = 50.0; // E
mean[1] = 1.0; // F
mean[2] = 10.0; // L
mean[3] = 5.0; // I
Point sigma(dim, 1.0);
IdentityMatrix R(dim);
Normal myDistribution(mean, sigma, R);
/* We create a 'usual' RandomVector from the Distribution */
RandomVector vect(myDistribution);
/* We create a composite random vector */
CompositeRandomVector output(myFunction, vect);
/* We create an Event from this RandomVector */
ThresholdEvent myEvent(output, Less(), -3.0);
Collection<WeightedExperiment> experiments(1, MonteCarloExperiment());
// qmc
experiments.add(LowDiscrepancyExperiment());
// importance sampling
mean[0] = 4.99689645939288809018e+01;
mean[1] = 1.84194175946153282375e+00;
mean[2] = 1.04454036676956398821e+01;
mean[3] = 4.66776215562709406726e+00;
Normal myImportance(mean, sigma, R);
experiments.add(ImportanceSamplingExperiment(myImportance));
// randomized qmc
LowDiscrepancyExperiment lde;
lde.setRandomize(true);
experiments.add(lde);
// randomized lhs
LHSExperiment lhse;
lhse.setAlwaysShuffle(true);
experiments.add(lhse);
for (UnsignedInteger i = 0; i < experiments.getSize(); ++ i)
{
RandomGenerator::SetSeed(0);
/* We create a Monte Carlo algorithm */
ProbabilitySimulationAlgorithm myAlgo(myEvent, experiments[i]);
myAlgo.setMaximumOuterSampling(250);
myAlgo.setBlockSize(4);
myAlgo.setMaximumCoefficientOfVariation(0.1);
myAlgo.setProgressCallback(&progress);
myAlgo.setStopCallback(&stop);
fullprint << "algo=" << myAlgo << std::endl;
/* Perform the simulation */
myAlgo.run();
/* Stream out the result */
fullprint << "algo result=" << myAlgo.getResult() << std::endl;
fullprint << "Confidence length at level 99%=" << myAlgo.getResult().getConfidenceLength(0.99) << std::endl;
fullprint << "Confidence length at level 80%=" << myAlgo.getResult().getConfidenceLength(0.8) << std::endl;
fullprint << "Probability distribution=" << myAlgo.getResult().getProbabilityDistribution() << std::endl;
/* Use the standard deviation as a stopping rule */
myAlgo = ProbabilitySimulationAlgorithm(myEvent, experiments[i]);
myAlgo.setMaximumOuterSampling(250);
myAlgo.setBlockSize(4);
myAlgo.setMaximumCoefficientOfVariation(0.0);
myAlgo.setMaximumStandardDeviation(0.1);
fullprint << "algo=" << myAlgo << std::endl;
/* Perform the simulation */
myAlgo.run();
/* Stream out the result */
fullprint << "algo result=" << myAlgo.getResult() << std::endl;
fullprint << "Probability distribution=" << myAlgo.getResult().getProbabilityDistribution() << std::endl;
}
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|