File: t_TrendFactory_std.cxx

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (118 lines) | stat: -rw-r--r-- 3,667 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
//                                               -*- C++ -*-
/**
 *  @brief The test file of class TrendFactory for standard methods
 *
 *  Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"

using namespace OT;
using namespace OT::Test;

int main(int, char *[])
{
  TESTPREAMBLE;
  OStream fullprint(std::cout);

  try
  {

    Description inVar(1);
    inVar[0] = "t";
    Description outVar(1);
    outVar[0] = "y";
    Description formula(1);

    Collection<Function> functions(3);

    formula[0] = "1";
    functions[0] = SymbolicFunction(inVar, formula);

    formula[0] = "cos(2 * t)";
    functions[1] = SymbolicFunction(inVar, formula);

    formula[0] = "sin(2 * t)";
    functions[2] = SymbolicFunction(inVar, formula);


    // We build the weights
    Sample coefficients(0, 2);
    Point p(2);
    p[0] = 1.5;
    p[1] = 2.5;
    coefficients.add(p);
    p[0] = -0.5;
    p[1] = 0.5;
    coefficients.add(p);

    p[0] = 1.;
    p[1] = 1.;
    coefficients.add(p);

    // Third, build the function
    DualLinearCombinationFunction myFunction(functions, coefficients);


    // Fourth : we build a time series for estimation
    // it issued from a white noise
    const UnsignedInteger dimension = 2;

    // Fix the realization as a Normal
    Normal noiseDistribution(Point(dimension, 0.), Point(dimension, 1.), CorrelationMatrix(dimension));

    // TimeGrid parameters
    const UnsignedInteger N = 1000;
    const Scalar timeStart = 0.;
    const Scalar timeStep = 0.1;
    RegularGrid timeGrid(timeStart, timeStep, N);

    // White noise
    const WhiteNoise myWhiteNoise(noiseDistribution, timeGrid);

    TimeSeries realization(myWhiteNoise.getRealization());
    fullprint << "White noise realization = " << realization << std::endl;

    // We make a trend transform to the time series
    // We get a time series which contains values of time
    TrendTransform myTransformFunction(myFunction, timeGrid);
    TimeSeries myTimeSeries(timeGrid, myTransformFunction(realization.getValues()));
    fullprint << "myTimeSeries = " << myTimeSeries << std::endl;

    // We wants to get the coefficients using a factory
    // Build a factory using default constructor
    TrendFactory myDefaultFactory;
    fullprint << "myDefaultFactory = " << myDefaultFactory << std::endl;

    TrendTransform myEstimateTrend(myDefaultFactory.build(myTimeSeries, functions));
    fullprint << "myEstimateTrend = " << myEstimateTrend << std::endl;

    // We fix a new fitting algorithm
    myDefaultFactory.setFittingAlgorithm(KFold());
    fullprint << "myDefaultFactory = " << myDefaultFactory << std::endl;
    TrendTransform myNewEstimateTrend(myDefaultFactory.build(myTimeSeries, functions));
    fullprint << "myNewEstimateTrend = " << myNewEstimateTrend << std::endl;
  }
  catch (TestFailed & ex)
  {
    std::cerr << ex << std::endl;
    return ExitCode::Error;
  }


  return ExitCode::Success;
}