File: t_TrendFactory_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (6 lines) | stat: -rw-r--r-- 73,120 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
White noise realization = class=TimeSeries name=Unnamed derived from=class=FieldImplementation name=Unnamed mesh=class=Mesh name=Unnamed dimension=1 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=1000 dimension=1 description=[t] data=[[0],[0.1],[0.2],[0.3],[0.4],[0.5],[0.6],[0.7],[0.8],[0.9],[1],[1.1],[1.2],[1.3],[1.4],[1.5],[1.6],[1.7],[1.8],[1.9],[2],[2.1],[2.2],[2.3],[2.4],[2.5],[2.6],[2.7],[2.8],[2.9],[3],[3.1],[3.2],[3.3],[3.4],[3.5],[3.6],[3.7],[3.8],[3.9],[4],[4.1],[4.2],[4.3],[4.4],[4.5],[4.6],[4.7],[4.8],[4.9],[5],[5.1],[5.2],[5.3],[5.4],[5.5],[5.6],[5.7],[5.8],[5.9],[6],[6.1],[6.2],[6.3],[6.4],[6.5],[6.6],[6.7],[6.8],[6.9],[7],[7.1],[7.2],[7.3],[7.4],[7.5],[7.6],[7.7],[7.8],[7.9],[8],[8.1],[8.2],[8.3],[8.4],[8.5],[8.6],[8.7],[8.8],[8.9],[9],[9.1],[9.2],[9.3],[9.4],[9.5],[9.6],[9.7],[9.8],[9.9],[10],[10.1],[10.2],[10.3],[10.4],[10.5],[10.6],[10.7],[10.8],[10.9],[11],[11.1],[11.2],[11.3],[11.4],[11.5],[11.6],[11.7],[11.8],[11.9],[12],[12.1],[12.2],[12.3],[12.4],[12.5],[12.6],[12.7],[12.8],[12.9],[13],[13.1],[13.2],[13.3],[13.4],[13.5],[13.6],[13.7],[13.8],[13.9],[14],[14.1],[14.2],[14.3],[14.4],[14.5],[14.6],[14.7],[14.8],[14.9],[15],[15.1],[15.2],[15.3],[15.4],[15.5],[15.6],[15.7],[15.8],[15.9],[16],[16.1],[16.2],[16.3],[16.4],[16.5],[16.6],[16.7],[16.8],[16.9],[17],[17.1],[17.2],[17.3],[17.4],[17.5],[17.6],[17.7],[17.8],[17.9],[18],[18.1],[18.2],[18.3],[18.4],[18.5],[18.6],[18.7],[18.8],[18.9],[19],[19.1],[19.2],[19.3],[19.4],[19.5],[19.6],[19.7],[19.8],[19.9],[20],[20.1],[20.2],[20.3],[20.4],[20.5],[20.6],[20.7],[20.8],[20.9],[21],[21.1],[21.2],[21.3],[21.4],[21.5],[21.6],[21.7],[21.8],[21.9],[22],[22.1],[22.2],[22.3],[22.4],[22.5],[22.6],[22.7],[22.8],[22.9],[23],[23.1],[23.2],[23.3],[23.4],[23.5],[23.6],[23.7],[23.8],[23.9],[24],[24.1],[24.2],[24.3],[24.4],[24.5],[24.6],[24.7],[24.8],[24.9],[25],[25.1],[25.2],[25.3],[25.4],[25.5],[25.6],[25.7],[25.8],[25.9],[26],[26.1],[26.2],[26.3],[26.4],[26.5],[26.6],[26.7],[26.8],[26.9],[27],[27.1],[27.2],[27.3],[27.4],[27.5],[27.6],[27.7],[27.8],[27.9],[28],[28.1],[28.2],[28.3],[28.4],[28.5],[28.6],[28.7],[28.8],[28.9],[29],[29.1],[29.2],[29.3],[29.4],[29.5],[29.6],[29.7],[29.8],[29.9],[30],[30.1],[30.2],[30.3],[30.4],[30.5],[30.6],[30.7],[30.8],[30.9],[31],[31.1],[31.2],[31.3],[31.4],[31.5],[31.6],[31.7],[31.8],[31.9],[32],[32.1],[32.2],[32.3],[32.4],[32.5],[32.6],[32.7],[32.8],[32.9],[33],[33.1],[33.2],[33.3],[33.4],[33.5],[33.6],[33.7],[33.8],[33.9],[34],[34.1],[34.2],[34.3],[34.4],[34.5],[34.6],[34.7],[34.8],[34.9],[35],[35.1],[35.2],[35.3],[35.4],[35.5],[35.6],[35.7],[35.8],[35.9],[36],[36.1],[36.2],[36.3],[36.4],[36.5],[36.6],[36.7],[36.8],[36.9],[37],[37.1],[37.2],[37.3],[37.4],[37.5],[37.6],[37.7],[37.8],[37.9],[38],[38.1],[38.2],[38.3],[38.4],[38.5],[38.6],[38.7],[38.8],[38.9],[39],[39.1],[39.2],[39.3],[39.4],[39.5],[39.6],[39.7],[39.8],[39.9],[40],[40.1],[40.2],[40.3],[40.4],[40.5],[40.6],[40.7],[40.8],[40.9],[41],[41.1],[41.2],[41.3],[41.4],[41.5],[41.6],[41.7],[41.8],[41.9],[42],[42.1],[42.2],[42.3],[42.4],[42.5],[42.6],[42.7],[42.8],[42.9],[43],[43.1],[43.2],[43.3],[43.4],[43.5],[43.6],[43.7],[43.8],[43.9],[44],[44.1],[44.2],[44.3],[44.4],[44.5],[44.6],[44.7],[44.8],[44.9],[45],[45.1],[45.2],[45.3],[45.4],[45.5],[45.6],[45.7],[45.8],[45.9],[46],[46.1],[46.2],[46.3],[46.4],[46.5],[46.6],[46.7],[46.8],[46.9],[47],[47.1],[47.2],[47.3],[47.4],[47.5],[47.6],[47.7],[47.8],[47.9],[48],[48.1],[48.2],[48.3],[48.4],[48.5],[48.6],[48.7],[48.8],[48.9],[49],[49.1],[49.2],[49.3],[49.4],[49.5],[49.6],[49.7],[49.8],[49.9],[50],[50.1],[50.2],[50.3],[50.4],[50.5],[50.6],[50.7],[50.8],[50.9],[51],[51.1],[51.2],[51.3],[51.4],[51.5],[51.6],[51.7],[51.8],[51.9],[52],[52.1],[52.2],[52.3],[52.4],[52.5],[52.6],[52.7],[52.8],[52.9],[53],[53.1],[53.2],[53.3],[53.4],[53.5],[53.6],[53.7],[53.8],[53.9],[54],[54.1],[54.2],[54.3],[54.4],[54.5],[54.6],[54.7],[54.8],[54.9],[55],[55.1],[55.2],[55.3],[55.4],[55.5],[55.6],[55.7],[55.8],[55.9],[56],[56.1],[56.2],[56.3],[56.4],[56.5],[56.6],[56.7],[56.8],[56.9],[57],[57.1],[57.2],[57.3],[57.4],[57.5],[57.6],[57.7],[57.8],[57.9],[58],[58.1],[58.2],[58.3],[58.4],[58.5],[58.6],[58.7],[58.8],[58.9],[59],[59.1],[59.2],[59.3],[59.4],[59.5],[59.6],[59.7],[59.8],[59.9],[60],[60.1],[60.2],[60.3],[60.4],[60.5],[60.6],[60.7],[60.8],[60.9],[61],[61.1],[61.2],[61.3],[61.4],[61.5],[61.6],[61.7],[61.8],[61.9],[62],[62.1],[62.2],[62.3],[62.4],[62.5],[62.6],[62.7],[62.8],[62.9],[63],[63.1],[63.2],[63.3],[63.4],[63.5],[63.6],[63.7],[63.8],[63.9],[64],[64.1],[64.2],[64.3],[64.4],[64.5],[64.6],[64.7],[64.8],[64.9],[65],[65.1],[65.2],[65.3],[65.4],[65.5],[65.6],[65.7],[65.8],[65.9],[66],[66.1],[66.2],[66.3],[66.4],[66.5],[66.6],[66.7],[66.8],[66.9],[67],[67.1],[67.2],[67.3],[67.4],[67.5],[67.6],[67.7],[67.8],[67.9],[68],[68.1],[68.2],[68.3],[68.4],[68.5],[68.6],[68.7],[68.8],[68.9],[69],[69.1],[69.2],[69.3],[69.4],[69.5],[69.6],[69.7],[69.8],[69.9],[70],[70.1],[70.2],[70.3],[70.4],[70.5],[70.6],[70.7],[70.8],[70.9],[71],[71.1],[71.2],[71.3],[71.4],[71.5],[71.6],[71.7],[71.8],[71.9],[72],[72.1],[72.2],[72.3],[72.4],[72.5],[72.6],[72.7],[72.8],[72.9],[73],[73.1],[73.2],[73.3],[73.4],[73.5],[73.6],[73.7],[73.8],[73.9],[74],[74.1],[74.2],[74.3],[74.4],[74.5],[74.6],[74.7],[74.8],[74.9],[75],[75.1],[75.2],[75.3],[75.4],[75.5],[75.6],[75.7],[75.8],[75.9],[76],[76.1],[76.2],[76.3],[76.4],[76.5],[76.6],[76.7],[76.8],[76.9],[77],[77.1],[77.2],[77.3],[77.4],[77.5],[77.6],[77.7],[77.8],[77.9],[78],[78.1],[78.2],[78.3],[78.4],[78.5],[78.6],[78.7],[78.8],[78.9],[79],[79.1],[79.2],[79.3],[79.4],[79.5],[79.6],[79.7],[79.8],[79.9],[80],[80.1],[80.2],[80.3],[80.4],[80.5],[80.6],[80.7],[80.8],[80.9],[81],[81.1],[81.2],[81.3],[81.4],[81.5],[81.6],[81.7],[81.8],[81.9],[82],[82.1],[82.2],[82.3],[82.4],[82.5],[82.6],[82.7],[82.8],[82.9],[83],[83.1],[83.2],[83.3],[83.4],[83.5],[83.6],[83.7],[83.8],[83.9],[84],[84.1],[84.2],[84.3],[84.4],[84.5],[84.6],[84.7],[84.8],[84.9],[85],[85.1],[85.2],[85.3],[85.4],[85.5],[85.6],[85.7],[85.8],[85.9],[86],[86.1],[86.2],[86.3],[86.4],[86.5],[86.6],[86.7],[86.8],[86.9],[87],[87.1],[87.2],[87.3],[87.4],[87.5],[87.6],[87.7],[87.8],[87.9],[88],[88.1],[88.2],[88.3],[88.4],[88.5],[88.6],[88.7],[88.8],[88.9],[89],[89.1],[89.2],[89.3],[89.4],[89.5],[89.6],[89.7],[89.8],[89.9],[90],[90.1],[90.2],[90.3],[90.4],[90.5],[90.6],[90.7],[90.8],[90.9],[91],[91.1],[91.2],[91.3],[91.4],[91.5],[91.6],[91.7],[91.8],[91.9],[92],[92.1],[92.2],[92.3],[92.4],[92.5],[92.6],[92.7],[92.8],[92.9],[93],[93.1],[93.2],[93.3],[93.4],[93.5],[93.6],[93.7],[93.8],[93.9],[94],[94.1],[94.2],[94.3],[94.4],[94.5],[94.6],[94.7],[94.8],[94.9],[95],[95.1],[95.2],[95.3],[95.4],[95.5],[95.6],[95.7],[95.8],[95.9],[96],[96.1],[96.2],[96.3],[96.4],[96.5],[96.6],[96.7],[96.8],[96.9],[97],[97.1],[97.2],[97.3],[97.4],[97.5],[97.6],[97.7],[97.8],[97.9],[98],[98.1],[98.2],[98.3],[98.4],[98.5],[98.6],[98.7],[98.8],[98.9],[99],[99.1],[99.2],[99.3],[99.4],[99.5],[99.6],[99.7],[99.8],[99.9]] simplices=[[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16],[16,17],[17,18],[18,19],[19,20],[20,21],[21,22],[22,23],[23,24],[24,25],[25,26],[26,27],[27,28],[28,29],[29,30],[30,31],[31,32],[32,33],[33,34],[34,35],[35,36],[36,37],[37,38],[38,39],[39,40],[40,41],[41,42],[42,43],[43,44],[44,45],[45,46],[46,47],[47,48],[48,49],[49,50],[50,51],[51,52],[52,53],[53,54],[54,55],[55,56],[56,57],[57,58],[58,59],[59,60],[60,61],[61,62],[62,63],[63,64],[64,65],[65,66],[66,67],[67,68],[68,69],[69,70],[70,71],[71,72],[72,73],[73,74],[74,75],[75,76],[76,77],[77,78],[78,79],[79,80],[80,81],[81,82],[82,83],[83,84],[84,85],[85,86],[86,87],[87,88],[88,89],[89,90],[90,91],[91,92],[92,93],[93,94],[94,95],[95,96],[96,97],[97,98],[98,99],[99,100],[100,101],[101,102],[102,103],[103,104],[104,105],[105,106],[106,107],[107,108],[108,109],[109,110],[110,111],[111,112],[112,113],[113,114],[114,115],[115,116],[116,117],[117,118],[118,119],[119,120],[120,121],[121,122],[122,123],[123,124],[124,125],[125,126],[126,127],[127,128],[128,129],[129,130],[130,131],[131,132],[132,133],[133,134],[134,135],[135,136],[136,137],[137,138],[138,139],[139,140],[140,141],[141,142],[142,143],[143,144],[144,145],[145,146],[146,147],[147,148],[148,149],[149,150],[150,151],[151,152],[152,153],[153,154],[154,155],[155,156],[156,157],[157,158],[158,159],[159,160],[160,161],[161,162],[162,163],[163,164],[164,165],[165,166],[166,167],[167,168],[168,169],[169,170],[170,171],[171,172],[172,173],[173,174],[174,175],[175,176],[176,177],[177,178],[178,179],[179,180],[180,181],[181,182],[182,183],[183,184],[184,185],[185,186],[186,187],[187,188],[188,189],[189,190],[190,191],[191,192],[192,193],[193,194],[194,195],[195,196],[196,197],[197,198],[198,199],[199,200],[200,201],[201,202],[202,203],[203,204],[204,205],[205,206],[206,207],[207,208],[208,209],[209,210],[210,211],[211,212],[212,213],[213,214],[214,215],[215,216],[216,217],[217,218],[218,219],[219,220],[220,221],[221,222],[222,223],[223,224],[224,225],[225,226],[226,227],[227,228],[228,229],[229,230],[230,231],[231,232],[232,233],[233,234],[234,235],[235,236],[236,237],[237,238],[238,239],[239,240],[240,241],[241,242],[242,243],[243,244],[244,245],[245,246],[246,247],[247,248],[248,249],[249,250],[250,251],[251,252],[252,253],[253,254],[254,255],[255,256],[256,257],[257,258],[258,259],[259,260],[260,261],[261,262],[262,263],[263,264],[264,265],[265,266],[266,267],[267,268],[268,269],[269,270],[270,271],[271,272],[272,273],[273,274],[274,275],[275,276],[276,277],[277,278],[278,279],[279,280],[280,281],[281,282],[282,283],[283,284],[284,285],[285,286],[286,287],[287,288],[288,289],[289,290],[290,291],[291,292],[292,293],[293,294],[294,295],[295,296],[296,297],[297,298],[298,299],[299,300],[300,301],[301,302],[302,303],[303,304],[304,305],[305,306],[306,307],[307,308],[308,309],[309,310],[310,311],[311,312],[312,313],[313,314],[314,315],[315,316],[316,317],[317,318],[318,319],[319,320],[320,321],[321,322],[322,323],[323,324],[324,325],[325,326],[326,327],[327,328],[328,329],[329,330],[330,331],[331,332],[332,333],[333,334],[334,335],[335,336],[336,337],[337,338],[338,339],[339,340],[340,341],[341,342],[342,343],[343,344],[344,345],[345,346],[346,347],[347,348],[348,349],[349,350],[350,351],[351,352],[352,353],[353,354],[354,355],[355,356],[356,357],[357,358],[358,359],[359,360],[360,361],[361,362],[362,363],[363,364],[364,365],[365,366],[366,367],[367,368],[368,369],[369,370],[370,371],[371,372],[372,373],[373,374],[374,375],[375,376],[376,377],[377,378],[378,379],[379,380],[380,381],[381,382],[382,383],[383,384],[384,385],[385,386],[386,387],[387,388],[388,389],[389,390],[390,391],[391,392],[392,393],[393,394],[394,395],[395,396],[396,397],[397,398],[398,399],[399,400],[400,401],[401,402],[402,403],[403,404],[404,405],[405,406],[406,407],[407,408],[408,409],[409,410],[410,411],[411,412],[412,413],[413,414],[414,415],[415,416],[416,417],[417,418],[418,419],[419,420],[420,421],[421,422],[422,423],[423,424],[424,425],[425,426],[426,427],[427,428],[428,429],[429,430],[430,431],[431,432],[432,433],[433,434],[434,435],[435,436],[436,437],[437,438],[438,439],[439,440],[440,441],[441,442],[442,443],[443,444],[444,445],[445,446],[446,447],[447,448],[448,449],[449,450],[450,451],[451,452],[452,453],[453,454],[454,455],[455,456],[456,457],[457,458],[458,459],[459,460],[460,461],[461,462],[462,463],[463,464],[464,465],[465,466],[466,467],[467,468],[468,469],[469,470],[470,471],[471,472],[472,473],[473,474],[474,475],[475,476],[476,477],[477,478],[478,479],[479,480],[480,481],[481,482],[482,483],[483,484],[484,485],[485,486],[486,487],[487,488],[488,489],[489,490],[490,491],[491,492],[492,493],[493,494],[494,495],[495,496],[496,497],[497,498],[498,499],[499,500],[500,501],[501,502],[502,503],[503,504],[504,505],[505,506],[506,507],[507,508],[508,509],[509,510],[510,511],[511,512],[512,513],[513,514],[514,515],[515,516],[516,517],[517,518],[518,519],[519,520],[520,521],[521,522],[522,523],[523,524],[524,525],[525,526],[526,527],[527,528],[528,529],[529,530],[530,531],[531,532],[532,533],[533,534],[534,535],[535,536],[536,537],[537,538],[538,539],[539,540],[540,541],[541,542],[542,543],[543,544],[544,545],[545,546],[546,547],[547,548],[548,549],[549,550],[550,551],[551,552],[552,553],[553,554],[554,555],[555,556],[556,557],[557,558],[558,559],[559,560],[560,561],[561,562],[562,563],[563,564],[564,565],[565,566],[566,567],[567,568],[568,569],[569,570],[570,571],[571,572],[572,573],[573,574],[574,575],[575,576],[576,577],[577,578],[578,579],[579,580],[580,581],[581,582],[582,583],[583,584],[584,585],[585,586],[586,587],[587,588],[588,589],[589,590],[590,591],[591,592],[592,593],[593,594],[594,595],[595,596],[596,597],[597,598],[598,599],[599,600],[600,601],[601,602],[602,603],[603,604],[604,605],[605,606],[606,607],[607,608],[608,609],[609,610],[610,611],[611,612],[612,613],[613,614],[614,615],[615,616],[616,617],[617,618],[618,619],[619,620],[620,621],[621,622],[622,623],[623,624],[624,625],[625,626],[626,627],[627,628],[628,629],[629,630],[630,631],[631,632],[632,633],[633,634],[634,635],[635,636],[636,637],[637,638],[638,639],[639,640],[640,641],[641,642],[642,643],[643,644],[644,645],[645,646],[646,647],[647,648],[648,649],[649,650],[650,651],[651,652],[652,653],[653,654],[654,655],[655,656],[656,657],[657,658],[658,659],[659,660],[660,661],[661,662],[662,663],[663,664],[664,665],[665,666],[666,667],[667,668],[668,669],[669,670],[670,671],[671,672],[672,673],[673,674],[674,675],[675,676],[676,677],[677,678],[678,679],[679,680],[680,681],[681,682],[682,683],[683,684],[684,685],[685,686],[686,687],[687,688],[688,689],[689,690],[690,691],[691,692],[692,693],[693,694],[694,695],[695,696],[696,697],[697,698],[698,699],[699,700],[700,701],[701,702],[702,703],[703,704],[704,705],[705,706],[706,707],[707,708],[708,709],[709,710],[710,711],[711,712],[712,713],[713,714],[714,715],[715,716],[716,717],[717,718],[718,719],[719,720],[720,721],[721,722],[722,723],[723,724],[724,725],[725,726],[726,727],[727,728],[728,729],[729,730],[730,731],[731,732],[732,733],[733,734],[734,735],[735,736],[736,737],[737,738],[738,739],[739,740],[740,741],[741,742],[742,743],[743,744],[744,745],[745,746],[746,747],[747,748],[748,749],[749,750],[750,751],[751,752],[752,753],[753,754],[754,755],[755,756],[756,757],[757,758],[758,759],[759,760],[760,761],[761,762],[762,763],[763,764],[764,765],[765,766],[766,767],[767,768],[768,769],[769,770],[770,771],[771,772],[772,773],[773,774],[774,775],[775,776],[776,777],[777,778],[778,779],[779,780],[780,781],[781,782],[782,783],[783,784],[784,785],[785,786],[786,787],[787,788],[788,789],[789,790],[790,791],[791,792],[792,793],[793,794],[794,795],[795,796],[796,797],[797,798],[798,799],[799,800],[800,801],[801,802],[802,803],[803,804],[804,805],[805,806],[806,807],[807,808],[808,809],[809,810],[810,811],[811,812],[812,813],[813,814],[814,815],[815,816],[816,817],[817,818],[818,819],[819,820],[820,821],[821,822],[822,823],[823,824],[824,825],[825,826],[826,827],[827,828],[828,829],[829,830],[830,831],[831,832],[832,833],[833,834],[834,835],[835,836],[836,837],[837,838],[838,839],[839,840],[840,841],[841,842],[842,843],[843,844],[844,845],[845,846],[846,847],[847,848],[848,849],[849,850],[850,851],[851,852],[852,853],[853,854],[854,855],[855,856],[856,857],[857,858],[858,859],[859,860],[860,861],[861,862],[862,863],[863,864],[864,865],[865,866],[866,867],[867,868],[868,869],[869,870],[870,871],[871,872],[872,873],[873,874],[874,875],[875,876],[876,877],[877,878],[878,879],[879,880],[880,881],[881,882],[882,883],[883,884],[884,885],[885,886],[886,887],[887,888],[888,889],[889,890],[890,891],[891,892],[892,893],[893,894],[894,895],[895,896],[896,897],[897,898],[898,899],[899,900],[900,901],[901,902],[902,903],[903,904],[904,905],[905,906],[906,907],[907,908],[908,909],[909,910],[910,911],[911,912],[912,913],[913,914],[914,915],[915,916],[916,917],[917,918],[918,919],[919,920],[920,921],[921,922],[922,923],[923,924],[924,925],[925,926],[926,927],[927,928],[928,929],[929,930],[930,931],[931,932],[932,933],[933,934],[934,935],[935,936],[936,937],[937,938],[938,939],[939,940],[940,941],[941,942],[942,943],[943,944],[944,945],[945,946],[946,947],[947,948],[948,949],[949,950],[950,951],[951,952],[952,953],[953,954],[954,955],[955,956],[956,957],[957,958],[958,959],[959,960],[960,961],[961,962],[962,963],[963,964],[964,965],[965,966],[966,967],[967,968],[968,969],[969,970],[970,971],[971,972],[972,973],[973,974],[974,975],[975,976],[976,977],[977,978],[978,979],[979,980],[980,981],[981,982],[982,983],[983,984],[984,985],[985,986],[986,987],[987,988],[988,989],[989,990],[990,991],[991,992],[992,993],[993,994],[994,995],[995,996],[996,997],[997,998],[998,999]] values=class=Sample name=Normal implementation=class=SampleImplementation name=Normal size=1000 dimension=2 description=[X0,X1] data=[[0.608202,-1.26617],[-0.438266,1.20548],[-2.18139,0.350042],...,[-0.560957,0.476333],[0.259183,-0.591989],[-0.773031,0.711512]] start=0 timeStep=0.1 n=1000
myTimeSeries = class=TimeSeries name=Unnamed derived from=class=FieldImplementation name=Unnamed mesh=class=Mesh name=Unnamed dimension=1 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=1000 dimension=1 description=[t] data=[[0],[0.1],[0.2],[0.3],[0.4],[0.5],[0.6],[0.7],[0.8],[0.9],[1],[1.1],[1.2],[1.3],[1.4],[1.5],[1.6],[1.7],[1.8],[1.9],[2],[2.1],[2.2],[2.3],[2.4],[2.5],[2.6],[2.7],[2.8],[2.9],[3],[3.1],[3.2],[3.3],[3.4],[3.5],[3.6],[3.7],[3.8],[3.9],[4],[4.1],[4.2],[4.3],[4.4],[4.5],[4.6],[4.7],[4.8],[4.9],[5],[5.1],[5.2],[5.3],[5.4],[5.5],[5.6],[5.7],[5.8],[5.9],[6],[6.1],[6.2],[6.3],[6.4],[6.5],[6.6],[6.7],[6.8],[6.9],[7],[7.1],[7.2],[7.3],[7.4],[7.5],[7.6],[7.7],[7.8],[7.9],[8],[8.1],[8.2],[8.3],[8.4],[8.5],[8.6],[8.7],[8.8],[8.9],[9],[9.1],[9.2],[9.3],[9.4],[9.5],[9.6],[9.7],[9.8],[9.9],[10],[10.1],[10.2],[10.3],[10.4],[10.5],[10.6],[10.7],[10.8],[10.9],[11],[11.1],[11.2],[11.3],[11.4],[11.5],[11.6],[11.7],[11.8],[11.9],[12],[12.1],[12.2],[12.3],[12.4],[12.5],[12.6],[12.7],[12.8],[12.9],[13],[13.1],[13.2],[13.3],[13.4],[13.5],[13.6],[13.7],[13.8],[13.9],[14],[14.1],[14.2],[14.3],[14.4],[14.5],[14.6],[14.7],[14.8],[14.9],[15],[15.1],[15.2],[15.3],[15.4],[15.5],[15.6],[15.7],[15.8],[15.9],[16],[16.1],[16.2],[16.3],[16.4],[16.5],[16.6],[16.7],[16.8],[16.9],[17],[17.1],[17.2],[17.3],[17.4],[17.5],[17.6],[17.7],[17.8],[17.9],[18],[18.1],[18.2],[18.3],[18.4],[18.5],[18.6],[18.7],[18.8],[18.9],[19],[19.1],[19.2],[19.3],[19.4],[19.5],[19.6],[19.7],[19.8],[19.9],[20],[20.1],[20.2],[20.3],[20.4],[20.5],[20.6],[20.7],[20.8],[20.9],[21],[21.1],[21.2],[21.3],[21.4],[21.5],[21.6],[21.7],[21.8],[21.9],[22],[22.1],[22.2],[22.3],[22.4],[22.5],[22.6],[22.7],[22.8],[22.9],[23],[23.1],[23.2],[23.3],[23.4],[23.5],[23.6],[23.7],[23.8],[23.9],[24],[24.1],[24.2],[24.3],[24.4],[24.5],[24.6],[24.7],[24.8],[24.9],[25],[25.1],[25.2],[25.3],[25.4],[25.5],[25.6],[25.7],[25.8],[25.9],[26],[26.1],[26.2],[26.3],[26.4],[26.5],[26.6],[26.7],[26.8],[26.9],[27],[27.1],[27.2],[27.3],[27.4],[27.5],[27.6],[27.7],[27.8],[27.9],[28],[28.1],[28.2],[28.3],[28.4],[28.5],[28.6],[28.7],[28.8],[28.9],[29],[29.1],[29.2],[29.3],[29.4],[29.5],[29.6],[29.7],[29.8],[29.9],[30],[30.1],[30.2],[30.3],[30.4],[30.5],[30.6],[30.7],[30.8],[30.9],[31],[31.1],[31.2],[31.3],[31.4],[31.5],[31.6],[31.7],[31.8],[31.9],[32],[32.1],[32.2],[32.3],[32.4],[32.5],[32.6],[32.7],[32.8],[32.9],[33],[33.1],[33.2],[33.3],[33.4],[33.5],[33.6],[33.7],[33.8],[33.9],[34],[34.1],[34.2],[34.3],[34.4],[34.5],[34.6],[34.7],[34.8],[34.9],[35],[35.1],[35.2],[35.3],[35.4],[35.5],[35.6],[35.7],[35.8],[35.9],[36],[36.1],[36.2],[36.3],[36.4],[36.5],[36.6],[36.7],[36.8],[36.9],[37],[37.1],[37.2],[37.3],[37.4],[37.5],[37.6],[37.7],[37.8],[37.9],[38],[38.1],[38.2],[38.3],[38.4],[38.5],[38.6],[38.7],[38.8],[38.9],[39],[39.1],[39.2],[39.3],[39.4],[39.5],[39.6],[39.7],[39.8],[39.9],[40],[40.1],[40.2],[40.3],[40.4],[40.5],[40.6],[40.7],[40.8],[40.9],[41],[41.1],[41.2],[41.3],[41.4],[41.5],[41.6],[41.7],[41.8],[41.9],[42],[42.1],[42.2],[42.3],[42.4],[42.5],[42.6],[42.7],[42.8],[42.9],[43],[43.1],[43.2],[43.3],[43.4],[43.5],[43.6],[43.7],[43.8],[43.9],[44],[44.1],[44.2],[44.3],[44.4],[44.5],[44.6],[44.7],[44.8],[44.9],[45],[45.1],[45.2],[45.3],[45.4],[45.5],[45.6],[45.7],[45.8],[45.9],[46],[46.1],[46.2],[46.3],[46.4],[46.5],[46.6],[46.7],[46.8],[46.9],[47],[47.1],[47.2],[47.3],[47.4],[47.5],[47.6],[47.7],[47.8],[47.9],[48],[48.1],[48.2],[48.3],[48.4],[48.5],[48.6],[48.7],[48.8],[48.9],[49],[49.1],[49.2],[49.3],[49.4],[49.5],[49.6],[49.7],[49.8],[49.9],[50],[50.1],[50.2],[50.3],[50.4],[50.5],[50.6],[50.7],[50.8],[50.9],[51],[51.1],[51.2],[51.3],[51.4],[51.5],[51.6],[51.7],[51.8],[51.9],[52],[52.1],[52.2],[52.3],[52.4],[52.5],[52.6],[52.7],[52.8],[52.9],[53],[53.1],[53.2],[53.3],[53.4],[53.5],[53.6],[53.7],[53.8],[53.9],[54],[54.1],[54.2],[54.3],[54.4],[54.5],[54.6],[54.7],[54.8],[54.9],[55],[55.1],[55.2],[55.3],[55.4],[55.5],[55.6],[55.7],[55.8],[55.9],[56],[56.1],[56.2],[56.3],[56.4],[56.5],[56.6],[56.7],[56.8],[56.9],[57],[57.1],[57.2],[57.3],[57.4],[57.5],[57.6],[57.7],[57.8],[57.9],[58],[58.1],[58.2],[58.3],[58.4],[58.5],[58.6],[58.7],[58.8],[58.9],[59],[59.1],[59.2],[59.3],[59.4],[59.5],[59.6],[59.7],[59.8],[59.9],[60],[60.1],[60.2],[60.3],[60.4],[60.5],[60.6],[60.7],[60.8],[60.9],[61],[61.1],[61.2],[61.3],[61.4],[61.5],[61.6],[61.7],[61.8],[61.9],[62],[62.1],[62.2],[62.3],[62.4],[62.5],[62.6],[62.7],[62.8],[62.9],[63],[63.1],[63.2],[63.3],[63.4],[63.5],[63.6],[63.7],[63.8],[63.9],[64],[64.1],[64.2],[64.3],[64.4],[64.5],[64.6],[64.7],[64.8],[64.9],[65],[65.1],[65.2],[65.3],[65.4],[65.5],[65.6],[65.7],[65.8],[65.9],[66],[66.1],[66.2],[66.3],[66.4],[66.5],[66.6],[66.7],[66.8],[66.9],[67],[67.1],[67.2],[67.3],[67.4],[67.5],[67.6],[67.7],[67.8],[67.9],[68],[68.1],[68.2],[68.3],[68.4],[68.5],[68.6],[68.7],[68.8],[68.9],[69],[69.1],[69.2],[69.3],[69.4],[69.5],[69.6],[69.7],[69.8],[69.9],[70],[70.1],[70.2],[70.3],[70.4],[70.5],[70.6],[70.7],[70.8],[70.9],[71],[71.1],[71.2],[71.3],[71.4],[71.5],[71.6],[71.7],[71.8],[71.9],[72],[72.1],[72.2],[72.3],[72.4],[72.5],[72.6],[72.7],[72.8],[72.9],[73],[73.1],[73.2],[73.3],[73.4],[73.5],[73.6],[73.7],[73.8],[73.9],[74],[74.1],[74.2],[74.3],[74.4],[74.5],[74.6],[74.7],[74.8],[74.9],[75],[75.1],[75.2],[75.3],[75.4],[75.5],[75.6],[75.7],[75.8],[75.9],[76],[76.1],[76.2],[76.3],[76.4],[76.5],[76.6],[76.7],[76.8],[76.9],[77],[77.1],[77.2],[77.3],[77.4],[77.5],[77.6],[77.7],[77.8],[77.9],[78],[78.1],[78.2],[78.3],[78.4],[78.5],[78.6],[78.7],[78.8],[78.9],[79],[79.1],[79.2],[79.3],[79.4],[79.5],[79.6],[79.7],[79.8],[79.9],[80],[80.1],[80.2],[80.3],[80.4],[80.5],[80.6],[80.7],[80.8],[80.9],[81],[81.1],[81.2],[81.3],[81.4],[81.5],[81.6],[81.7],[81.8],[81.9],[82],[82.1],[82.2],[82.3],[82.4],[82.5],[82.6],[82.7],[82.8],[82.9],[83],[83.1],[83.2],[83.3],[83.4],[83.5],[83.6],[83.7],[83.8],[83.9],[84],[84.1],[84.2],[84.3],[84.4],[84.5],[84.6],[84.7],[84.8],[84.9],[85],[85.1],[85.2],[85.3],[85.4],[85.5],[85.6],[85.7],[85.8],[85.9],[86],[86.1],[86.2],[86.3],[86.4],[86.5],[86.6],[86.7],[86.8],[86.9],[87],[87.1],[87.2],[87.3],[87.4],[87.5],[87.6],[87.7],[87.8],[87.9],[88],[88.1],[88.2],[88.3],[88.4],[88.5],[88.6],[88.7],[88.8],[88.9],[89],[89.1],[89.2],[89.3],[89.4],[89.5],[89.6],[89.7],[89.8],[89.9],[90],[90.1],[90.2],[90.3],[90.4],[90.5],[90.6],[90.7],[90.8],[90.9],[91],[91.1],[91.2],[91.3],[91.4],[91.5],[91.6],[91.7],[91.8],[91.9],[92],[92.1],[92.2],[92.3],[92.4],[92.5],[92.6],[92.7],[92.8],[92.9],[93],[93.1],[93.2],[93.3],[93.4],[93.5],[93.6],[93.7],[93.8],[93.9],[94],[94.1],[94.2],[94.3],[94.4],[94.5],[94.6],[94.7],[94.8],[94.9],[95],[95.1],[95.2],[95.3],[95.4],[95.5],[95.6],[95.7],[95.8],[95.9],[96],[96.1],[96.2],[96.3],[96.4],[96.5],[96.6],[96.7],[96.8],[96.9],[97],[97.1],[97.2],[97.3],[97.4],[97.5],[97.6],[97.7],[97.8],[97.9],[98],[98.1],[98.2],[98.3],[98.4],[98.5],[98.6],[98.7],[98.8],[98.9],[99],[99.1],[99.2],[99.3],[99.4],[99.5],[99.6],[99.7],[99.8],[99.9]] simplices=[[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16],[16,17],[17,18],[18,19],[19,20],[20,21],[21,22],[22,23],[23,24],[24,25],[25,26],[26,27],[27,28],[28,29],[29,30],[30,31],[31,32],[32,33],[33,34],[34,35],[35,36],[36,37],[37,38],[38,39],[39,40],[40,41],[41,42],[42,43],[43,44],[44,45],[45,46],[46,47],[47,48],[48,49],[49,50],[50,51],[51,52],[52,53],[53,54],[54,55],[55,56],[56,57],[57,58],[58,59],[59,60],[60,61],[61,62],[62,63],[63,64],[64,65],[65,66],[66,67],[67,68],[68,69],[69,70],[70,71],[71,72],[72,73],[73,74],[74,75],[75,76],[76,77],[77,78],[78,79],[79,80],[80,81],[81,82],[82,83],[83,84],[84,85],[85,86],[86,87],[87,88],[88,89],[89,90],[90,91],[91,92],[92,93],[93,94],[94,95],[95,96],[96,97],[97,98],[98,99],[99,100],[100,101],[101,102],[102,103],[103,104],[104,105],[105,106],[106,107],[107,108],[108,109],[109,110],[110,111],[111,112],[112,113],[113,114],[114,115],[115,116],[116,117],[117,118],[118,119],[119,120],[120,121],[121,122],[122,123],[123,124],[124,125],[125,126],[126,127],[127,128],[128,129],[129,130],[130,131],[131,132],[132,133],[133,134],[134,135],[135,136],[136,137],[137,138],[138,139],[139,140],[140,141],[141,142],[142,143],[143,144],[144,145],[145,146],[146,147],[147,148],[148,149],[149,150],[150,151],[151,152],[152,153],[153,154],[154,155],[155,156],[156,157],[157,158],[158,159],[159,160],[160,161],[161,162],[162,163],[163,164],[164,165],[165,166],[166,167],[167,168],[168,169],[169,170],[170,171],[171,172],[172,173],[173,174],[174,175],[175,176],[176,177],[177,178],[178,179],[179,180],[180,181],[181,182],[182,183],[183,184],[184,185],[185,186],[186,187],[187,188],[188,189],[189,190],[190,191],[191,192],[192,193],[193,194],[194,195],[195,196],[196,197],[197,198],[198,199],[199,200],[200,201],[201,202],[202,203],[203,204],[204,205],[205,206],[206,207],[207,208],[208,209],[209,210],[210,211],[211,212],[212,213],[213,214],[214,215],[215,216],[216,217],[217,218],[218,219],[219,220],[220,221],[221,222],[222,223],[223,224],[224,225],[225,226],[226,227],[227,228],[228,229],[229,230],[230,231],[231,232],[232,233],[233,234],[234,235],[235,236],[236,237],[237,238],[238,239],[239,240],[240,241],[241,242],[242,243],[243,244],[244,245],[245,246],[246,247],[247,248],[248,249],[249,250],[250,251],[251,252],[252,253],[253,254],[254,255],[255,256],[256,257],[257,258],[258,259],[259,260],[260,261],[261,262],[262,263],[263,264],[264,265],[265,266],[266,267],[267,268],[268,269],[269,270],[270,271],[271,272],[272,273],[273,274],[274,275],[275,276],[276,277],[277,278],[278,279],[279,280],[280,281],[281,282],[282,283],[283,284],[284,285],[285,286],[286,287],[287,288],[288,289],[289,290],[290,291],[291,292],[292,293],[293,294],[294,295],[295,296],[296,297],[297,298],[298,299],[299,300],[300,301],[301,302],[302,303],[303,304],[304,305],[305,306],[306,307],[307,308],[308,309],[309,310],[310,311],[311,312],[312,313],[313,314],[314,315],[315,316],[316,317],[317,318],[318,319],[319,320],[320,321],[321,322],[322,323],[323,324],[324,325],[325,326],[326,327],[327,328],[328,329],[329,330],[330,331],[331,332],[332,333],[333,334],[334,335],[335,336],[336,337],[337,338],[338,339],[339,340],[340,341],[341,342],[342,343],[343,344],[344,345],[345,346],[346,347],[347,348],[348,349],[349,350],[350,351],[351,352],[352,353],[353,354],[354,355],[355,356],[356,357],[357,358],[358,359],[359,360],[360,361],[361,362],[362,363],[363,364],[364,365],[365,366],[366,367],[367,368],[368,369],[369,370],[370,371],[371,372],[372,373],[373,374],[374,375],[375,376],[376,377],[377,378],[378,379],[379,380],[380,381],[381,382],[382,383],[383,384],[384,385],[385,386],[386,387],[387,388],[388,389],[389,390],[390,391],[391,392],[392,393],[393,394],[394,395],[395,396],[396,397],[397,398],[398,399],[399,400],[400,401],[401,402],[402,403],[403,404],[404,405],[405,406],[406,407],[407,408],[408,409],[409,410],[410,411],[411,412],[412,413],[413,414],[414,415],[415,416],[416,417],[417,418],[418,419],[419,420],[420,421],[421,422],[422,423],[423,424],[424,425],[425,426],[426,427],[427,428],[428,429],[429,430],[430,431],[431,432],[432,433],[433,434],[434,435],[435,436],[436,437],[437,438],[438,439],[439,440],[440,441],[441,442],[442,443],[443,444],[444,445],[445,446],[446,447],[447,448],[448,449],[449,450],[450,451],[451,452],[452,453],[453,454],[454,455],[455,456],[456,457],[457,458],[458,459],[459,460],[460,461],[461,462],[462,463],[463,464],[464,465],[465,466],[466,467],[467,468],[468,469],[469,470],[470,471],[471,472],[472,473],[473,474],[474,475],[475,476],[476,477],[477,478],[478,479],[479,480],[480,481],[481,482],[482,483],[483,484],[484,485],[485,486],[486,487],[487,488],[488,489],[489,490],[490,491],[491,492],[492,493],[493,494],[494,495],[495,496],[496,497],[497,498],[498,499],[499,500],[500,501],[501,502],[502,503],[503,504],[504,505],[505,506],[506,507],[507,508],[508,509],[509,510],[510,511],[511,512],[512,513],[513,514],[514,515],[515,516],[516,517],[517,518],[518,519],[519,520],[520,521],[521,522],[522,523],[523,524],[524,525],[525,526],[526,527],[527,528],[528,529],[529,530],[530,531],[531,532],[532,533],[533,534],[534,535],[535,536],[536,537],[537,538],[538,539],[539,540],[540,541],[541,542],[542,543],[543,544],[544,545],[545,546],[546,547],[547,548],[548,549],[549,550],[550,551],[551,552],[552,553],[553,554],[554,555],[555,556],[556,557],[557,558],[558,559],[559,560],[560,561],[561,562],[562,563],[563,564],[564,565],[565,566],[566,567],[567,568],[568,569],[569,570],[570,571],[571,572],[572,573],[573,574],[574,575],[575,576],[576,577],[577,578],[578,579],[579,580],[580,581],[581,582],[582,583],[583,584],[584,585],[585,586],[586,587],[587,588],[588,589],[589,590],[590,591],[591,592],[592,593],[593,594],[594,595],[595,596],[596,597],[597,598],[598,599],[599,600],[600,601],[601,602],[602,603],[603,604],[604,605],[605,606],[606,607],[607,608],[608,609],[609,610],[610,611],[611,612],[612,613],[613,614],[614,615],[615,616],[616,617],[617,618],[618,619],[619,620],[620,621],[621,622],[622,623],[623,624],[624,625],[625,626],[626,627],[627,628],[628,629],[629,630],[630,631],[631,632],[632,633],[633,634],[634,635],[635,636],[636,637],[637,638],[638,639],[639,640],[640,641],[641,642],[642,643],[643,644],[644,645],[645,646],[646,647],[647,648],[648,649],[649,650],[650,651],[651,652],[652,653],[653,654],[654,655],[655,656],[656,657],[657,658],[658,659],[659,660],[660,661],[661,662],[662,663],[663,664],[664,665],[665,666],[666,667],[667,668],[668,669],[669,670],[670,671],[671,672],[672,673],[673,674],[674,675],[675,676],[676,677],[677,678],[678,679],[679,680],[680,681],[681,682],[682,683],[683,684],[684,685],[685,686],[686,687],[687,688],[688,689],[689,690],[690,691],[691,692],[692,693],[693,694],[694,695],[695,696],[696,697],[697,698],[698,699],[699,700],[700,701],[701,702],[702,703],[703,704],[704,705],[705,706],[706,707],[707,708],[708,709],[709,710],[710,711],[711,712],[712,713],[713,714],[714,715],[715,716],[716,717],[717,718],[718,719],[719,720],[720,721],[721,722],[722,723],[723,724],[724,725],[725,726],[726,727],[727,728],[728,729],[729,730],[730,731],[731,732],[732,733],[733,734],[734,735],[735,736],[736,737],[737,738],[738,739],[739,740],[740,741],[741,742],[742,743],[743,744],[744,745],[745,746],[746,747],[747,748],[748,749],[749,750],[750,751],[751,752],[752,753],[753,754],[754,755],[755,756],[756,757],[757,758],[758,759],[759,760],[760,761],[761,762],[762,763],[763,764],[764,765],[765,766],[766,767],[767,768],[768,769],[769,770],[770,771],[771,772],[772,773],[773,774],[774,775],[775,776],[776,777],[777,778],[778,779],[779,780],[780,781],[781,782],[782,783],[783,784],[784,785],[785,786],[786,787],[787,788],[788,789],[789,790],[790,791],[791,792],[792,793],[793,794],[794,795],[795,796],[796,797],[797,798],[798,799],[799,800],[800,801],[801,802],[802,803],[803,804],[804,805],[805,806],[806,807],[807,808],[808,809],[809,810],[810,811],[811,812],[812,813],[813,814],[814,815],[815,816],[816,817],[817,818],[818,819],[819,820],[820,821],[821,822],[822,823],[823,824],[824,825],[825,826],[826,827],[827,828],[828,829],[829,830],[830,831],[831,832],[832,833],[833,834],[834,835],[835,836],[836,837],[837,838],[838,839],[839,840],[840,841],[841,842],[842,843],[843,844],[844,845],[845,846],[846,847],[847,848],[848,849],[849,850],[850,851],[851,852],[852,853],[853,854],[854,855],[855,856],[856,857],[857,858],[858,859],[859,860],[860,861],[861,862],[862,863],[863,864],[864,865],[865,866],[866,867],[867,868],[868,869],[869,870],[870,871],[871,872],[872,873],[873,874],[874,875],[875,876],[876,877],[877,878],[878,879],[879,880],[880,881],[881,882],[882,883],[883,884],[884,885],[885,886],[886,887],[887,888],[888,889],[889,890],[890,891],[891,892],[892,893],[893,894],[894,895],[895,896],[896,897],[897,898],[898,899],[899,900],[900,901],[901,902],[902,903],[903,904],[904,905],[905,906],[906,907],[907,908],[908,909],[909,910],[910,911],[911,912],[912,913],[913,914],[914,915],[915,916],[916,917],[917,918],[918,919],[919,920],[920,921],[921,922],[922,923],[923,924],[924,925],[925,926],[926,927],[927,928],[928,929],[929,930],[930,931],[931,932],[932,933],[933,934],[934,935],[935,936],[936,937],[937,938],[938,939],[939,940],[940,941],[941,942],[942,943],[943,944],[944,945],[945,946],[946,947],[947,948],[948,949],[949,950],[950,951],[951,952],[952,953],[953,954],[954,955],[955,956],[956,957],[957,958],[958,959],[959,960],[960,961],[961,962],[962,963],[963,964],[964,965],[965,966],[966,967],[967,968],[968,969],[969,970],[970,971],[971,972],[972,973],[973,974],[974,975],[975,976],[976,977],[977,978],[978,979],[979,980],[980,981],[981,982],[982,983],[983,984],[984,985],[985,986],[986,987],[987,988],[988,989],[989,990],[990,991],[991,992],[992,993],[993,994],[994,995],[995,996],[996,997],[997,998],[998,999]] values=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=1000 dimension=2 description=[v0,v1] data=[[1.6082,1.73383],[0.77037,4.39418],[-0.752497,3.69999],...,[-0.0113032,1.93498],[0.710777,0.968257],[-0.377699,2.41082]] start=0 timeStep=0.1 n=1000
myDefaultFactory = class=TrendFactory fittingAlgorithm = class=CorrectedLeaveOneOut basisSequenceFactory = class=LARS
myEstimateTrend = class=TrendTransform inherited from class=VertexValueFunction evaluation=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,x0,x1,v0,v1] evaluationImplementation=class=TrendEvaluation name=Unnamed function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,v0,v1] evaluationImplementation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] gradientImplementation=class=DualLinearCombinationGradient evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] hessianImplementation=class=DualLinearCombinationHessian evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] gradientImplementation=class=CenteredFiniteDifferenceGradient name=Unnamed epsilon=class=Point name=Unnamed dimension=3 values=[1e-05,1e-05,1e-05] evaluation=class=TrendEvaluation name=Unnamed function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,v0,v1] evaluationImplementation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] gradientImplementation=class=DualLinearCombinationGradient evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] hessianImplementation=class=DualLinearCombinationHessian evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=3 values=[0.0001,0.0001,0.0001] evaluation=class=TrendEvaluation name=Unnamed function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,v0,v1] evaluationImplementation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] gradientImplementation=class=DualLinearCombinationGradient evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] hessianImplementation=class=DualLinearCombinationHessian evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]]
myDefaultFactory = class=TrendFactory fittingAlgorithm = class=KFold basisSequenceFactory = class=LARS
myNewEstimateTrend = class=TrendTransform inherited from class=VertexValueFunction evaluation=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,x0,x1,v0,v1] evaluationImplementation=class=TrendEvaluation name=Unnamed function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,v0,v1] evaluationImplementation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] gradientImplementation=class=DualLinearCombinationGradient evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] hessianImplementation=class=DualLinearCombinationHessian evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] gradientImplementation=class=CenteredFiniteDifferenceGradient name=Unnamed epsilon=class=Point name=Unnamed dimension=3 values=[1e-05,1e-05,1e-05] evaluation=class=TrendEvaluation name=Unnamed function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,v0,v1] evaluationImplementation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] gradientImplementation=class=DualLinearCombinationGradient evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] hessianImplementation=class=DualLinearCombinationHessian evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=3 values=[0.0001,0.0001,0.0001] evaluation=class=TrendEvaluation name=Unnamed function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,v0,v1] evaluationImplementation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] gradientImplementation=class=DualLinearCombinationGradient evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]] hessianImplementation=class=DualLinearCombinationHessian evaluation=class=DualLinearCombinationEvaluation functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[1],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[cos(2 * t)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[t,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[t] outputVariablesNames=[y0] formulas=[sin(2 * t)]] coefficients=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[1.47317,2.50233],[-0.49061,0.441109],[1.0026,0.964772]]