1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
// -*- C++ -*-
/**
* @brief The test file of class Triangular for standard methods
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
class TestObject : public Triangular
{
public:
TestObject() : Triangular(-0.5, 1.5, 2.5) {}
virtual ~TestObject() {}
};
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
// Test basic functionnalities
checkClassWithClassName<TestObject>();
Collection< Triangular > coll;
coll.add(Triangular(-0.5, 1.5, 2.5));
coll.add(Triangular(-0.5, -0.5, 2.5));
coll.add(Triangular(-0.5, 2.5, 2.5));
coll.add(Triangular(-2.5, 0.0, 2.5));
Point u = {0.1, 0.01, 0.001, 0.0001, 0.00001};
Collection< Collection<Complex> > refValues(4);
refValues[0].add(Complex(9.9127099972903484510e-01, 1.1618827274767113648e-01));
refValues[0].add(Complex(9.9991250210240596186e-01, 1.1666187507734305978e-02));
refValues[0].add(Complex(9.9999912500021024303e-01, 1.1666661875000773437e-03));
refValues[0].add(Complex(9.9999999125000002102e-01, 1.1666666618750000077e-04));
refValues[0].add(Complex(9.9999999991250000000e-01, 1.1666666666187500000e-05));
refValues[1].add(Complex(9.9625754367833246793e-01, 4.9821102073080346159e-02));
refValues[1].add(Complex(9.9996250075519992255e-01, 4.9998208360230421163e-03));
refValues[1].add(Complex(9.9999962500007552082e-01, 4.9999982083336023065e-04));
refValues[1].add(Complex(9.9999999625000000755e-01, 4.9999999820833333602e-05));
refValues[1].add(Complex(9.9999999996250000000e-01, 4.9999999998208333333e-06));
refValues[2].add(Complex(9.8629664648967592135e-01, 1.4909782248906273663e-01));
refValues[2].add(Complex(9.9986250467180267611e-01, 1.4999095853247538925e-02));
refValues[2].add(Complex(9.9999862500046718743e-01, 1.4999990958335324777e-03));
refValues[2].add(Complex(9.9999998625000004672e-01, 1.4999999909583333532e-04));
refValues[2].add(Complex(9.9999999986250000000e-01, 1.4999999999095833333e-05));
refValues[3].add(Complex(9.9480250525936690737e-01, 0.0000000000000000000e+00));
refValues[3].add(Complex(9.9994791775172400105e-01, 0.0000000000000000000e+00));
refValues[3].add(Complex(9.9999947916677517360e-01, 0.0000000000000000000e+00));
refValues[3].add(Complex(9.9999999479166667752e-01, 0.0000000000000000000e+00));
refValues[3].add(Complex(9.9999999994791666667e-01, 0.0000000000000000000e+00));
for (UnsignedInteger nTriangular = 0; nTriangular < coll.getSize(); ++nTriangular)
{
// Instantiate one distribution object
Triangular distribution(coll[nTriangular]);
fullprint << "Distribution " << distribution << std::endl;
std::cout << "Distribution " << distribution << std::endl;
// Is this distribution elliptical ?
fullprint << "Elliptical = " << (distribution.isElliptical() ? "true" : "false") << std::endl;
// Is this distribution continuous ?
fullprint << "Continuous = " << (distribution.isContinuous() ? "true" : "false") << std::endl;
// Test for realization of distribution
Point oneRealization = distribution.getRealization();
fullprint << "oneRealization=" << oneRealization << std::endl;
// Test for sampling
UnsignedInteger size = 10000;
Sample oneSample = distribution.getSample( size );
fullprint << "oneSample first=" << oneSample[0] << " last=" << oneSample[size - 1] << std::endl;
fullprint << "mean=" << oneSample.computeMean() << std::endl;
fullprint << "covariance=" << oneSample.computeCovariance() << std::endl;
size = 100;
for (UnsignedInteger i = 0; i < 2; ++i)
{
fullprint << "Kolmogorov test for the generator, sample size=" << size << " is " << (FittingTest::Kolmogorov(distribution.getSample(size), distribution).getBinaryQualityMeasure() ? "accepted" : "rejected") << std::endl;
size *= 10;
}
// Define a point, left part of the support
Point point( distribution.getDimension(), 1.0 );
fullprint << "Point= " << point << std::endl;
// Show PDF and CDF of point
Scalar eps = 1e-5;
Point DDF = distribution.computeDDF( point );
fullprint << "ddf =" << DDF << std::endl;
Scalar LPDF = distribution.computeLogPDF( point );
fullprint << "log pdf=" << LPDF << std::endl;
Scalar PDF = distribution.computePDF( point );
fullprint << "pdf =" << PDF << std::endl;
fullprint << "pdf (FD)=" << (distribution.computeCDF( point + Point(1, eps) ) - distribution.computeCDF( point + Point(1, -eps) )) / (2.0 * eps) << std::endl;
Scalar CDF = distribution.computeCDF( point );
fullprint << "cdf=" << CDF << std::endl;
Scalar CCDF = distribution.computeComplementaryCDF( point );
fullprint << "ccdf=" << CCDF << std::endl;
Scalar Survival = distribution.computeSurvivalFunction( point );
fullprint << "survival=" << Survival << std::endl;
Point InverseSurvival = distribution.computeInverseSurvivalFunction(0.95);
fullprint << "Inverse survival=" << InverseSurvival << std::endl;
fullprint << "Survival(inverse survival)=" << distribution.computeSurvivalFunction(InverseSurvival) << std::endl;
Complex CF = distribution.computeCharacteristicFunction( point[0] );
fullprint << "characteristic function=" << CF << std::endl;
Complex LCF = distribution.computeLogCharacteristicFunction( point[0] );
fullprint << "log characteristic function=" << LCF << std::endl;
for (UnsignedInteger j = 0; j < refValues[nTriangular].getSize(); ++j)
assert_almost_equal(distribution.computeCharacteristicFunction(u[j]), refValues[nTriangular][j]);
try
{
Point PDFgr = distribution.computePDFGradient( point );
fullprint << "pdf gradient =" << PDFgr << std::endl;
Point PDFgrFD(3);
PDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computePDF(point) -
Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computePDF(point)) / (2.0 * eps);
PDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computePDF(point) -
Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps);
PDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computePDF(point) -
Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps);
fullprint << "pdf gradient (FD)=" << PDFgrFD << std::endl;
Point CDFgr = distribution.computeCDFGradient( point );
fullprint << "cdf gradient =" << CDFgr << std::endl;
Point CDFgrFD(3);
CDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computeCDF(point) -
Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computeCDF(point)) / (2.0 * eps);
CDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computeCDF(point) -
Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps);
CDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computeCDF(point) -
Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps);
fullprint << "cdf gradient (FD)=" << CDFgrFD << std::endl;
}
catch(const NotDefinedException &)
{
}
Point quantile = distribution.computeQuantile( 0.25 );
fullprint << "quantile=" << quantile << std::endl;
fullprint << "cdf(quantile)=" << distribution.computeCDF(quantile) << std::endl;
// Confidence regions
Scalar threshold;
fullprint << "Minimum volume interval=" << distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95, threshold) << std::endl;
fullprint << "threshold=" << threshold << std::endl;
Scalar beta;
LevelSet levelSet(distribution.computeMinimumVolumeLevelSetWithThreshold(0.95, beta));
fullprint << "Minimum volume level set=" << levelSet << std::endl;
fullprint << "beta=" << beta << std::endl;
fullprint << "Bilateral confidence interval=" << distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95, beta) << std::endl;
fullprint << "beta=" << beta << std::endl;
fullprint << "Unilateral confidence interval (lower tail)=" << distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, false, beta) << std::endl;
fullprint << "beta=" << beta << std::endl;
fullprint << "Unilateral confidence interval (upper tail)=" << distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, true, beta) << std::endl;
fullprint << "beta=" << beta << std::endl;
// Define a point, right part of the support
point = Point( distribution.getDimension(), 2.0 );
fullprint << "Point= " << point << std::endl;
// Show PDF and CDF of point
DDF = distribution.computeDDF( point );
fullprint << "ddf =" << DDF << std::endl;
fullprint << "ddf (FD)=" << Point(1, (distribution.computePDF( point + Point(1, eps) ) - distribution.computePDF( point + Point(1, -eps) )) / (2.0 * eps)) << std::endl;
PDF = distribution.computePDF( point );
fullprint << "pdf =" << PDF << std::endl;
fullprint << "pdf (FD)=" << (distribution.computeCDF( point + Point(1, eps) ) - distribution.computeCDF( point + Point(1, -eps) )) / (2.0 * eps) << std::endl;
CDF = distribution.computeCDF( point );
fullprint << "cdf=" << CDF << std::endl;
try
{
Point PDFgr = distribution.computePDFGradient( point );
fullprint << "pdf gradient =" << PDFgr << std::endl;
Point PDFgrFD(3);
PDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computePDF(point) -
Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computePDF(point)) / (2.0 * eps);
PDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computePDF(point) -
Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps);
PDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computePDF(point) -
Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps);
fullprint << "pdf gradient (FD)=" << PDFgrFD << std::endl;
Point CDFgr = distribution.computeCDFGradient( point );
fullprint << "cdf gradient =" << CDFgr << std::endl;
Point CDFgrFD(3);
CDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computeCDF(point) -
Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computeCDF(point)) / (2.0 * eps);
CDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computeCDF(point) -
Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps);
CDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computeCDF(point) -
Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps);
fullprint << "cdf gradient (FD)=" << CDFgrFD << std::endl;
}
catch(const NotDefinedException &)
{
}
quantile = distribution.computeQuantile( 0.95 );
fullprint << "quantile=" << quantile << std::endl;
fullprint << "cdf(quantile)=" << distribution.computeCDF(quantile) << std::endl;
fullprint << "entropy=" << distribution.computeEntropy() << std::endl;
fullprint << "entropy (MC)=" << -distribution.computeLogPDF(distribution.getSample(1000000)).computeMean()[0] << std::endl;
// Moments
Point mean = distribution.getMean();
fullprint << "mean=" << mean << std::endl;
Point standardDeviation = distribution.getStandardDeviation();
fullprint << "standard deviation=" << standardDeviation << std::endl;
Point skewness = distribution.getSkewness();
fullprint << "skewness=" << skewness << std::endl;
Point kurtosis = distribution.getKurtosis();
fullprint << "kurtosis=" << kurtosis << std::endl;
CovarianceMatrix covariance = distribution.getCovariance();
fullprint << "covariance=" << covariance << std::endl;
CovarianceMatrix correlation = distribution.getCorrelation();
fullprint << "correlation=" << correlation << std::endl;
CovarianceMatrix spearman = distribution.getSpearmanCorrelation();
fullprint << "spearman=" << spearman << std::endl;
CovarianceMatrix kendall = distribution.getKendallTau();
fullprint << "kendall=" << kendall << std::endl;
Triangular::PointWithDescriptionCollection parameters = distribution.getParametersCollection();
fullprint << "parameters=" << parameters << std::endl;
fullprint << "Standard representative=" << distribution.getStandardRepresentative().__str__() << std::endl;
}
}
catch (const TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|