File: t_Triangular_std.cxx

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (248 lines) | stat: -rw-r--r-- 14,688 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//                                               -*- C++ -*-
/**
 *  @brief The test file of class Triangular for standard methods
 *
 *  Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"

using namespace OT;
using namespace OT::Test;

class TestObject : public Triangular
{
public:
  TestObject() : Triangular(-0.5, 1.5, 2.5) {}
  virtual ~TestObject() {}
};


int main(int, char *[])
{
  TESTPREAMBLE;
  OStream fullprint(std::cout);

  try
  {
    // Test basic functionnalities
    checkClassWithClassName<TestObject>();

    Collection< Triangular > coll;
    coll.add(Triangular(-0.5,  1.5, 2.5));
    coll.add(Triangular(-0.5, -0.5, 2.5));
    coll.add(Triangular(-0.5,  2.5, 2.5));
    coll.add(Triangular(-2.5,  0.0, 2.5));
    Point u = {0.1, 0.01, 0.001, 0.0001, 0.00001};
    Collection< Collection<Complex> > refValues(4);
    refValues[0].add(Complex(9.9127099972903484510e-01, 1.1618827274767113648e-01));
    refValues[0].add(Complex(9.9991250210240596186e-01, 1.1666187507734305978e-02));
    refValues[0].add(Complex(9.9999912500021024303e-01, 1.1666661875000773437e-03));
    refValues[0].add(Complex(9.9999999125000002102e-01, 1.1666666618750000077e-04));
    refValues[0].add(Complex(9.9999999991250000000e-01, 1.1666666666187500000e-05));
    refValues[1].add(Complex(9.9625754367833246793e-01, 4.9821102073080346159e-02));
    refValues[1].add(Complex(9.9996250075519992255e-01, 4.9998208360230421163e-03));
    refValues[1].add(Complex(9.9999962500007552082e-01, 4.9999982083336023065e-04));
    refValues[1].add(Complex(9.9999999625000000755e-01, 4.9999999820833333602e-05));
    refValues[1].add(Complex(9.9999999996250000000e-01, 4.9999999998208333333e-06));
    refValues[2].add(Complex(9.8629664648967592135e-01, 1.4909782248906273663e-01));
    refValues[2].add(Complex(9.9986250467180267611e-01, 1.4999095853247538925e-02));
    refValues[2].add(Complex(9.9999862500046718743e-01, 1.4999990958335324777e-03));
    refValues[2].add(Complex(9.9999998625000004672e-01, 1.4999999909583333532e-04));
    refValues[2].add(Complex(9.9999999986250000000e-01, 1.4999999999095833333e-05));
    refValues[3].add(Complex(9.9480250525936690737e-01, 0.0000000000000000000e+00));
    refValues[3].add(Complex(9.9994791775172400105e-01, 0.0000000000000000000e+00));
    refValues[3].add(Complex(9.9999947916677517360e-01, 0.0000000000000000000e+00));
    refValues[3].add(Complex(9.9999999479166667752e-01, 0.0000000000000000000e+00));
    refValues[3].add(Complex(9.9999999994791666667e-01, 0.0000000000000000000e+00));

    for (UnsignedInteger nTriangular = 0; nTriangular < coll.getSize(); ++nTriangular)
    {
      // Instantiate one distribution object
      Triangular distribution(coll[nTriangular]);
      fullprint << "Distribution " << distribution << std::endl;
      std::cout << "Distribution " << distribution << std::endl;

      // Is this distribution elliptical ?
      fullprint << "Elliptical = " << (distribution.isElliptical() ? "true" : "false") << std::endl;

      // Is this distribution continuous ?
      fullprint << "Continuous = " << (distribution.isContinuous() ? "true" : "false") << std::endl;

      // Test for realization of distribution
      Point oneRealization = distribution.getRealization();
      fullprint << "oneRealization=" << oneRealization << std::endl;

      // Test for sampling
      UnsignedInteger size = 10000;
      Sample oneSample = distribution.getSample( size );
      fullprint << "oneSample first=" << oneSample[0] << " last=" << oneSample[size - 1] << std::endl;
      fullprint << "mean=" << oneSample.computeMean() << std::endl;
      fullprint << "covariance=" << oneSample.computeCovariance() << std::endl;
      size = 100;
      for (UnsignedInteger i = 0; i < 2; ++i)
      {
        fullprint << "Kolmogorov test for the generator, sample size=" << size << " is " << (FittingTest::Kolmogorov(distribution.getSample(size), distribution).getBinaryQualityMeasure() ? "accepted" : "rejected") << std::endl;
        size *= 10;
      }

      // Define a point, left part of the support
      Point point( distribution.getDimension(), 1.0 );
      fullprint << "Point= " << point << std::endl;

      // Show PDF and CDF of point
      Scalar eps = 1e-5;
      Point DDF = distribution.computeDDF( point );
      fullprint << "ddf     =" << DDF << std::endl;
      Scalar LPDF = distribution.computeLogPDF( point );
      fullprint << "log pdf=" << LPDF << std::endl;
      Scalar PDF = distribution.computePDF( point );
      fullprint << "pdf     =" << PDF << std::endl;
      fullprint << "pdf (FD)=" << (distribution.computeCDF( point + Point(1, eps) ) - distribution.computeCDF( point  + Point(1, -eps) )) / (2.0 * eps) << std::endl;
      Scalar CDF = distribution.computeCDF( point );
      fullprint << "cdf=" << CDF << std::endl;
      Scalar CCDF = distribution.computeComplementaryCDF( point );
      fullprint << "ccdf=" << CCDF << std::endl;
      Scalar Survival = distribution.computeSurvivalFunction( point );
      fullprint << "survival=" << Survival << std::endl;
      Point InverseSurvival = distribution.computeInverseSurvivalFunction(0.95);
      fullprint << "Inverse survival=" << InverseSurvival << std::endl;
      fullprint << "Survival(inverse survival)=" << distribution.computeSurvivalFunction(InverseSurvival) << std::endl;
      Complex CF = distribution.computeCharacteristicFunction( point[0] );
      fullprint << "characteristic function=" << CF << std::endl;
      Complex LCF = distribution.computeLogCharacteristicFunction( point[0] );
      fullprint << "log characteristic function=" << LCF << std::endl;
      for (UnsignedInteger j = 0; j < refValues[nTriangular].getSize(); ++j)
        assert_almost_equal(distribution.computeCharacteristicFunction(u[j]), refValues[nTriangular][j]);
      try
      {
        Point PDFgr = distribution.computePDFGradient( point );
        fullprint << "pdf gradient     =" << PDFgr << std::endl;
        Point PDFgrFD(3);
        PDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computePDF(point) -
                      Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computePDF(point)) / (2.0 * eps);
        PDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computePDF(point) -
                      Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps);
        PDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computePDF(point) -
                      Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps);
        fullprint << "pdf gradient (FD)=" << PDFgrFD << std::endl;
        Point CDFgr = distribution.computeCDFGradient( point );
        fullprint << "cdf gradient     =" << CDFgr << std::endl;
        Point CDFgrFD(3);
        CDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computeCDF(point) -
                      Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computeCDF(point)) / (2.0 * eps);
        CDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computeCDF(point) -
                      Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps);
        CDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computeCDF(point) -
                      Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps);
        fullprint << "cdf gradient (FD)=" << CDFgrFD << std::endl;
      }
      catch(const NotDefinedException &)
      {
      }
      Point quantile = distribution.computeQuantile( 0.25 );
      fullprint << "quantile=" << quantile << std::endl;
      fullprint << "cdf(quantile)=" << distribution.computeCDF(quantile) << std::endl;
      // Confidence regions
      Scalar threshold;
      fullprint << "Minimum volume interval=" << distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95, threshold) << std::endl;
      fullprint << "threshold=" << threshold << std::endl;
      Scalar beta;
      LevelSet levelSet(distribution.computeMinimumVolumeLevelSetWithThreshold(0.95, beta));
      fullprint << "Minimum volume level set=" << levelSet << std::endl;
      fullprint << "beta=" << beta << std::endl;
      fullprint << "Bilateral confidence interval=" << distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95, beta) << std::endl;
      fullprint << "beta=" << beta << std::endl;
      fullprint << "Unilateral confidence interval (lower tail)=" << distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, false, beta) << std::endl;
      fullprint << "beta=" << beta << std::endl;
      fullprint << "Unilateral confidence interval (upper tail)=" << distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, true, beta) << std::endl;
      fullprint << "beta=" << beta << std::endl;
      // Define a point, right part of the support
      point = Point( distribution.getDimension(), 2.0 );
      fullprint << "Point= " << point << std::endl;

      // Show PDF and CDF of point
      DDF = distribution.computeDDF( point );
      fullprint << "ddf     =" << DDF << std::endl;
      fullprint << "ddf (FD)=" << Point(1, (distribution.computePDF( point + Point(1, eps) ) - distribution.computePDF( point  + Point(1, -eps) )) / (2.0 * eps)) << std::endl;
      PDF = distribution.computePDF( point );
      fullprint << "pdf     =" << PDF << std::endl;
      fullprint << "pdf (FD)=" << (distribution.computeCDF( point + Point(1, eps) ) - distribution.computeCDF( point  + Point(1, -eps) )) / (2.0 * eps) << std::endl;
      CDF = distribution.computeCDF( point );
      fullprint << "cdf=" << CDF << std::endl;
      try
      {
        Point PDFgr = distribution.computePDFGradient( point );
        fullprint << "pdf gradient     =" << PDFgr << std::endl;
        Point PDFgrFD(3);
        PDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computePDF(point) -
                      Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computePDF(point)) / (2.0 * eps);
        PDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computePDF(point) -
                      Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps);
        PDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computePDF(point) -
                      Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps);
        fullprint << "pdf gradient (FD)=" << PDFgrFD << std::endl;
        Point CDFgr = distribution.computeCDFGradient( point );
        fullprint << "cdf gradient     =" << CDFgr << std::endl;
        Point CDFgrFD(3);
        CDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computeCDF(point) -
                      Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computeCDF(point)) / (2.0 * eps);
        CDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computeCDF(point) -
                      Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps);
        CDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computeCDF(point) -
                      Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps);
        fullprint << "cdf gradient (FD)=" << CDFgrFD << std::endl;
      }
      catch(const NotDefinedException &)
      {
      }
      quantile = distribution.computeQuantile( 0.95 );
      fullprint << "quantile=" << quantile << std::endl;
      fullprint << "cdf(quantile)=" << distribution.computeCDF(quantile) << std::endl;
      fullprint << "entropy=" << distribution.computeEntropy() << std::endl;
      fullprint << "entropy (MC)=" << -distribution.computeLogPDF(distribution.getSample(1000000)).computeMean()[0] << std::endl;
      // Moments
      Point mean = distribution.getMean();
      fullprint << "mean=" << mean << std::endl;
      Point standardDeviation = distribution.getStandardDeviation();
      fullprint << "standard deviation=" << standardDeviation << std::endl;
      Point skewness = distribution.getSkewness();
      fullprint << "skewness=" << skewness << std::endl;
      Point kurtosis = distribution.getKurtosis();
      fullprint << "kurtosis=" << kurtosis << std::endl;
      CovarianceMatrix covariance = distribution.getCovariance();
      fullprint << "covariance=" << covariance << std::endl;
      CovarianceMatrix correlation = distribution.getCorrelation();
      fullprint << "correlation=" << correlation << std::endl;
      CovarianceMatrix spearman = distribution.getSpearmanCorrelation();
      fullprint << "spearman=" << spearman << std::endl;
      CovarianceMatrix kendall = distribution.getKendallTau();
      fullprint << "kendall=" << kendall << std::endl;
      Triangular::PointWithDescriptionCollection parameters = distribution.getParametersCollection();
      fullprint << "parameters=" << parameters << std::endl;
      fullprint << "Standard representative=" << distribution.getStandardRepresentative().__str__() << std::endl;
    }
  }
  catch (const TestFailed & ex)
  {
    std::cerr << ex << std::endl;
    return ExitCode::Error;
  }


  return ExitCode::Success;
}