1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
Testing class Triangular
checkConstructorAndDestructor()
checkCopyConstructor()
streamObject(const T & anObject)
class=Triangular name=Triangular dimension=1 a=-0.5 m=1.5 b=2.5
streamObject(const T & anObject)
class=Triangular name=Triangular dimension=1 a=-0.5 m=1.5 b=2.5
areSameObjects(const T & firstObject, const T & secondObject)
areDifferentObjects(const T & firstObject, const T & secondObject)
Distribution class=Triangular name=Triangular dimension=1 a=-0.5 m=1.5 b=2.5
Distribution Triangular(a = -0.5, m = 1.5, b = 2.5)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[1.44403]
oneSample first=class=Point name=Unnamed dimension=1 values=[1.90705] last=class=Point name=Unnamed dimension=1 values=[1.09635]
mean=class=Point name=Unnamed dimension=1 values=[1.17256]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.39567]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[0.333333]
log pdf=-0.693147
pdf =0.5
pdf (FD)=0.5
cdf=0.375
ccdf=0.625
survival=0.625
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.0477226]
Survival(inverse survival)=0.95
characteristic function=(0.312305,0.758322)
log characteristic function=(-0.198312,1.18013)
pdf gradient =class=Point name=Unnamed dimension=3 values=[0.0833333,-0.25,-0.166667]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[0.0833333,-0.25,-0.166667]
cdf gradient =class=Point name=Unnamed dimension=3 values=[-0.1875,-0.1875,-0.125]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.1875,-0.1875,-0.125]
quantile=class=Point name=Unnamed dimension=1 values=[0.724745]
cdf(quantile)=0.25
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.0527864] upper bound=class=Point name=Unnamed dimension=1 values=[2.27639] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 1.5, b = 2.5)) gradientImplementation=MinimumVolumeLevelSetGradient(Triangular(a = -0.5, m = 1.5, b = 2.5)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 1.5, b = 2.5)) level=1.90333
beta=0.149071
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.112702] upper bound=class=Point name=Unnamed dimension=1 values=[2.22614] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[2.1127] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.0477226] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Point= class=Point name=Unnamed dimension=1 values=[2]
ddf =class=Point name=Unnamed dimension=1 values=[-0.666667]
ddf (FD)=class=Point name=Unnamed dimension=1 values=[-0.666667]
pdf =0.333333
pdf (FD)=0.333333
cdf=0.916667
pdf gradient =class=Point name=Unnamed dimension=3 values=[0.111111,0.333333,0.222222]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[0.111111,0.333333,0.222222]
cdf gradient =class=Point name=Unnamed dimension=3 values=[-0.0277778,-0.0833333,-0.222222]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.0277778,-0.0833333,-0.222222]
quantile=class=Point name=Unnamed dimension=1 values=[2.1127]
cdf(quantile)=0.95
entropy=0.905465
entropy (MC)=0.905897
mean=class=Point name=Unnamed dimension=1 values=[1.16667]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.62361]
skewness=class=Point name=Unnamed dimension=1 values=[-0.305441]
kurtosis=class=Point name=Unnamed dimension=1 values=[2.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.388889]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[a : -0.5, m : 1.5, b : 2.5]]
Standard representative=Triangular(a = -1, m = 0.333333, b = 1)
Distribution class=Triangular name=Triangular dimension=1 a=-0.5 m=-0.5 b=2.5
Distribution Triangular(a = -0.5, m = -0.5, b = 2.5)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[-0.448569]
oneSample first=class=Point name=Unnamed dimension=1 values=[1.02457] last=class=Point name=Unnamed dimension=1 values=[0.576697]
mean=class=Point name=Unnamed dimension=1 values=[0.503814]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.498958]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[-0.222222]
log pdf=-1.09861
pdf =0.333333
pdf (FD)=0.333333
cdf=0.75
ccdf=0.25
survival=0.25
Inverse survival=class=Point name=Unnamed dimension=1 values=[-0.424038]
Survival(inverse survival)=0.95
characteristic function=(0.692667,0.345522)
log characteristic function=(-0.256102,0.46271)
quantile=class=Point name=Unnamed dimension=1 values=[-0.0980762]
cdf(quantile)=0.25
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[1.82918] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = -0.5, b = 2.5)) gradientImplementation=MinimumVolumeLevelSetGradient(Triangular(a = -0.5, m = -0.5, b = 2.5)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = -0.5, b = 2.5)) level=1.90333
beta=0.149071
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.462263] upper bound=class=Point name=Unnamed dimension=1 values=[2.02566] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[1.82918] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.424038] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Point= class=Point name=Unnamed dimension=1 values=[2]
ddf =class=Point name=Unnamed dimension=1 values=[-0.222222]
ddf (FD)=class=Point name=Unnamed dimension=1 values=[-0.222222]
pdf =0.111111
pdf (FD)=0.111111
cdf=0.972222
quantile=class=Point name=Unnamed dimension=1 values=[1.82918]
cdf(quantile)=0.95
entropy=0.905465
entropy (MC)=0.905233
mean=class=Point name=Unnamed dimension=1 values=[0.5]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.707107]
skewness=class=Point name=Unnamed dimension=1 values=[0.565685]
kurtosis=class=Point name=Unnamed dimension=1 values=[2.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.5]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[a : -0.5, m : -0.5, b : 2.5]]
Standard representative=Triangular(a = -1, m = -1, b = 1)
Distribution class=Triangular name=Triangular dimension=1 a=-0.5 m=2.5 b=2.5
Distribution Triangular(a = -0.5, m = 2.5, b = 2.5)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[1.87854]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.529311] last=class=Point name=Unnamed dimension=1 values=[1.91944]
mean=class=Point name=Unnamed dimension=1 values=[1.50193]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.50609]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[0.222222]
log pdf=-1.09861
pdf =0.333333
pdf (FD)=0.333333
cdf=0.25
ccdf=0.75
survival=0.75
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.17082]
Survival(inverse survival)=0.95
characteristic function=(0.0259312,0.773629)
log characteristic function=(-0.256102,1.53729)
quantile=class=Point name=Unnamed dimension=1 values=[1]
cdf(quantile)=0.25
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.17082] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 2.5, b = 2.5)) gradientImplementation=MinimumVolumeLevelSetGradient(Triangular(a = -0.5, m = 2.5, b = 2.5)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 2.5, b = 2.5)) level=1.90333
beta=0.149071
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.0256584] upper bound=class=Point name=Unnamed dimension=1 values=[2.46226] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[2.42404] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.17082] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Point= class=Point name=Unnamed dimension=1 values=[2]
ddf =class=Point name=Unnamed dimension=1 values=[0.222222]
ddf (FD)=class=Point name=Unnamed dimension=1 values=[0.222222]
pdf =0.555556
pdf (FD)=0.555556
cdf=0.694444
quantile=class=Point name=Unnamed dimension=1 values=[2.42404]
cdf(quantile)=0.95
entropy=0.905465
entropy (MC)=0.905983
mean=class=Point name=Unnamed dimension=1 values=[1.5]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.707107]
skewness=class=Point name=Unnamed dimension=1 values=[-0.565685]
kurtosis=class=Point name=Unnamed dimension=1 values=[2.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.5]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[a : -0.5, m : 2.5, b : 2.5]]
Standard representative=Triangular(a = -1, m = 1, b = 1)
Distribution class=Triangular name=Triangular dimension=1 a=-2.5 m=0 b=2.5
Distribution Triangular(a = -2.5, m = 0, b = 2.5)
Elliptical = true
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[2.29272]
oneSample first=class=Point name=Unnamed dimension=1 values=[1.22613] last=class=Point name=Unnamed dimension=1 values=[0.669551]
mean=class=Point name=Unnamed dimension=1 values=[0.00155171]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.02717]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[-0.16]
log pdf=-1.42712
pdf =0.24
pdf (FD)=0.24
cdf=0.82
ccdf=0.18
survival=0.18
Inverse survival=class=Point name=Unnamed dimension=1 values=[-1.70943]
Survival(inverse survival)=0.95
characteristic function=(0.576366,0)
log characteristic function=(-0.551012,0)
pdf gradient =class=Point name=Unnamed dimension=3 values=[0.048,0.096,0.016]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[0.048,0.096,0.016]
cdf gradient =class=Point name=Unnamed dimension=3 values=[-0.036,-0.072,-0.132]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.036,-0.072,-0.132]
quantile=class=Point name=Unnamed dimension=1 values=[-0.732233]
cdf(quantile)=0.25
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.94098] upper bound=class=Point name=Unnamed dimension=1 values=[1.94098] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Triangular(a = -2.5, m = 0, b = 2.5)) gradientImplementation=MinimumVolumeLevelSetGradient(Triangular(a = -2.5, m = 0, b = 2.5)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Triangular(a = -2.5, m = 0, b = 2.5)) level=2.41416
beta=0.0894427
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.94098] upper bound=class=Point name=Unnamed dimension=1 values=[1.94098] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-2.5] upper bound=class=Point name=Unnamed dimension=1 values=[1.70943] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.70943] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Point= class=Point name=Unnamed dimension=1 values=[2]
ddf =class=Point name=Unnamed dimension=1 values=[-0.16]
ddf (FD)=class=Point name=Unnamed dimension=1 values=[-0.16]
pdf =0.08
pdf (FD)=0.08
cdf=0.98
pdf gradient =class=Point name=Unnamed dimension=3 values=[0.016,0.032,0.112]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[0.016,0.032,0.112]
cdf gradient =class=Point name=Unnamed dimension=3 values=[-0.004,-0.008,-0.068]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.004,-0.008,-0.068]
quantile=class=Point name=Unnamed dimension=1 values=[1.70943]
cdf(quantile)=0.95
entropy=1.41629
entropy (MC)=1.41602
mean=class=Point name=Unnamed dimension=1 values=[0]
standard deviation=class=Point name=Unnamed dimension=1 values=[1.02062]
skewness=class=Point name=Unnamed dimension=1 values=[0]
kurtosis=class=Point name=Unnamed dimension=1 values=[2.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.04167]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[a : -2.5, m : 0, b : 2.5]]
Standard representative=Triangular(a = -1, m = 0, b = 1)
|