File: t_Triangular_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (241 lines) | stat: -rw-r--r-- 18,008 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
Testing class Triangular
checkConstructorAndDestructor()
checkCopyConstructor()
streamObject(const T & anObject)
class=Triangular name=Triangular dimension=1 a=-0.5 m=1.5 b=2.5
streamObject(const T & anObject)
class=Triangular name=Triangular dimension=1 a=-0.5 m=1.5 b=2.5
areSameObjects(const T & firstObject, const T & secondObject)
areDifferentObjects(const T & firstObject, const T & secondObject)
Distribution class=Triangular name=Triangular dimension=1 a=-0.5 m=1.5 b=2.5
Distribution Triangular(a = -0.5, m = 1.5, b = 2.5)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[1.44403]
oneSample first=class=Point name=Unnamed dimension=1 values=[1.90705] last=class=Point name=Unnamed dimension=1 values=[1.09635]
mean=class=Point name=Unnamed dimension=1 values=[1.17256]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.39567]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[0.333333]
log pdf=-0.693147
pdf     =0.5
pdf (FD)=0.5
cdf=0.375
ccdf=0.625
survival=0.625
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.0477226]
Survival(inverse survival)=0.95
characteristic function=(0.312305,0.758322)
log characteristic function=(-0.198312,1.18013)
pdf gradient     =class=Point name=Unnamed dimension=3 values=[0.0833333,-0.25,-0.166667]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[0.0833333,-0.25,-0.166667]
cdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.1875,-0.1875,-0.125]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.1875,-0.1875,-0.125]
quantile=class=Point name=Unnamed dimension=1 values=[0.724745]
cdf(quantile)=0.25
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.0527864] upper bound=class=Point name=Unnamed dimension=1 values=[2.27639] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 1.5, b = 2.5)) gradientImplementation=MinimumVolumeLevelSetGradient(Triangular(a = -0.5, m = 1.5, b = 2.5)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 1.5, b = 2.5)) level=1.90333
beta=0.149071
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.112702] upper bound=class=Point name=Unnamed dimension=1 values=[2.22614] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[2.1127] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.0477226] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Point= class=Point name=Unnamed dimension=1 values=[2]
ddf     =class=Point name=Unnamed dimension=1 values=[-0.666667]
ddf (FD)=class=Point name=Unnamed dimension=1 values=[-0.666667]
pdf     =0.333333
pdf (FD)=0.333333
cdf=0.916667
pdf gradient     =class=Point name=Unnamed dimension=3 values=[0.111111,0.333333,0.222222]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[0.111111,0.333333,0.222222]
cdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.0277778,-0.0833333,-0.222222]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.0277778,-0.0833333,-0.222222]
quantile=class=Point name=Unnamed dimension=1 values=[2.1127]
cdf(quantile)=0.95
entropy=0.905465
entropy (MC)=0.905897
mean=class=Point name=Unnamed dimension=1 values=[1.16667]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.62361]
skewness=class=Point name=Unnamed dimension=1 values=[-0.305441]
kurtosis=class=Point name=Unnamed dimension=1 values=[2.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.388889]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[a : -0.5, m : 1.5, b : 2.5]]
Standard representative=Triangular(a = -1, m = 0.333333, b = 1)
Distribution class=Triangular name=Triangular dimension=1 a=-0.5 m=-0.5 b=2.5
Distribution Triangular(a = -0.5, m = -0.5, b = 2.5)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[-0.448569]
oneSample first=class=Point name=Unnamed dimension=1 values=[1.02457] last=class=Point name=Unnamed dimension=1 values=[0.576697]
mean=class=Point name=Unnamed dimension=1 values=[0.503814]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.498958]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[-0.222222]
log pdf=-1.09861
pdf     =0.333333
pdf (FD)=0.333333
cdf=0.75
ccdf=0.25
survival=0.25
Inverse survival=class=Point name=Unnamed dimension=1 values=[-0.424038]
Survival(inverse survival)=0.95
characteristic function=(0.692667,0.345522)
log characteristic function=(-0.256102,0.46271)
quantile=class=Point name=Unnamed dimension=1 values=[-0.0980762]
cdf(quantile)=0.25
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[1.82918] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = -0.5, b = 2.5)) gradientImplementation=MinimumVolumeLevelSetGradient(Triangular(a = -0.5, m = -0.5, b = 2.5)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = -0.5, b = 2.5)) level=1.90333
beta=0.149071
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.462263] upper bound=class=Point name=Unnamed dimension=1 values=[2.02566] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[1.82918] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.424038] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Point= class=Point name=Unnamed dimension=1 values=[2]
ddf     =class=Point name=Unnamed dimension=1 values=[-0.222222]
ddf (FD)=class=Point name=Unnamed dimension=1 values=[-0.222222]
pdf     =0.111111
pdf (FD)=0.111111
cdf=0.972222
quantile=class=Point name=Unnamed dimension=1 values=[1.82918]
cdf(quantile)=0.95
entropy=0.905465
entropy (MC)=0.905233
mean=class=Point name=Unnamed dimension=1 values=[0.5]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.707107]
skewness=class=Point name=Unnamed dimension=1 values=[0.565685]
kurtosis=class=Point name=Unnamed dimension=1 values=[2.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.5]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[a : -0.5, m : -0.5, b : 2.5]]
Standard representative=Triangular(a = -1, m = -1, b = 1)
Distribution class=Triangular name=Triangular dimension=1 a=-0.5 m=2.5 b=2.5
Distribution Triangular(a = -0.5, m = 2.5, b = 2.5)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[1.87854]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.529311] last=class=Point name=Unnamed dimension=1 values=[1.91944]
mean=class=Point name=Unnamed dimension=1 values=[1.50193]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.50609]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[0.222222]
log pdf=-1.09861
pdf     =0.333333
pdf (FD)=0.333333
cdf=0.25
ccdf=0.75
survival=0.75
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.17082]
Survival(inverse survival)=0.95
characteristic function=(0.0259312,0.773629)
log characteristic function=(-0.256102,1.53729)
quantile=class=Point name=Unnamed dimension=1 values=[1]
cdf(quantile)=0.25
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.17082] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 2.5, b = 2.5)) gradientImplementation=MinimumVolumeLevelSetGradient(Triangular(a = -0.5, m = 2.5, b = 2.5)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 2.5, b = 2.5)) level=1.90333
beta=0.149071
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.0256584] upper bound=class=Point name=Unnamed dimension=1 values=[2.46226] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[2.42404] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.17082] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Point= class=Point name=Unnamed dimension=1 values=[2]
ddf     =class=Point name=Unnamed dimension=1 values=[0.222222]
ddf (FD)=class=Point name=Unnamed dimension=1 values=[0.222222]
pdf     =0.555556
pdf (FD)=0.555556
cdf=0.694444
quantile=class=Point name=Unnamed dimension=1 values=[2.42404]
cdf(quantile)=0.95
entropy=0.905465
entropy (MC)=0.905983
mean=class=Point name=Unnamed dimension=1 values=[1.5]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.707107]
skewness=class=Point name=Unnamed dimension=1 values=[-0.565685]
kurtosis=class=Point name=Unnamed dimension=1 values=[2.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.5]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[a : -0.5, m : 2.5, b : 2.5]]
Standard representative=Triangular(a = -1, m = 1, b = 1)
Distribution class=Triangular name=Triangular dimension=1 a=-2.5 m=0 b=2.5
Distribution Triangular(a = -2.5, m = 0, b = 2.5)
Elliptical = true
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[2.29272]
oneSample first=class=Point name=Unnamed dimension=1 values=[1.22613] last=class=Point name=Unnamed dimension=1 values=[0.669551]
mean=class=Point name=Unnamed dimension=1 values=[0.00155171]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.02717]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[-0.16]
log pdf=-1.42712
pdf     =0.24
pdf (FD)=0.24
cdf=0.82
ccdf=0.18
survival=0.18
Inverse survival=class=Point name=Unnamed dimension=1 values=[-1.70943]
Survival(inverse survival)=0.95
characteristic function=(0.576366,0)
log characteristic function=(-0.551012,0)
pdf gradient     =class=Point name=Unnamed dimension=3 values=[0.048,0.096,0.016]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[0.048,0.096,0.016]
cdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.036,-0.072,-0.132]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.036,-0.072,-0.132]
quantile=class=Point name=Unnamed dimension=1 values=[-0.732233]
cdf(quantile)=0.25
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.94098] upper bound=class=Point name=Unnamed dimension=1 values=[1.94098] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Triangular(a = -2.5, m = 0, b = 2.5)) gradientImplementation=MinimumVolumeLevelSetGradient(Triangular(a = -2.5, m = 0, b = 2.5)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Triangular(a = -2.5, m = 0, b = 2.5)) level=2.41416
beta=0.0894427
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.94098] upper bound=class=Point name=Unnamed dimension=1 values=[1.94098] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-2.5] upper bound=class=Point name=Unnamed dimension=1 values=[1.70943] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.70943] upper bound=class=Point name=Unnamed dimension=1 values=[2.5] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Point= class=Point name=Unnamed dimension=1 values=[2]
ddf     =class=Point name=Unnamed dimension=1 values=[-0.16]
ddf (FD)=class=Point name=Unnamed dimension=1 values=[-0.16]
pdf     =0.08
pdf (FD)=0.08
cdf=0.98
pdf gradient     =class=Point name=Unnamed dimension=3 values=[0.016,0.032,0.112]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[0.016,0.032,0.112]
cdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.004,-0.008,-0.068]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.004,-0.008,-0.068]
quantile=class=Point name=Unnamed dimension=1 values=[1.70943]
cdf(quantile)=0.95
entropy=1.41629
entropy (MC)=1.41602
mean=class=Point name=Unnamed dimension=1 values=[0]
standard deviation=class=Point name=Unnamed dimension=1 values=[1.02062]
skewness=class=Point name=Unnamed dimension=1 values=[0]
kurtosis=class=Point name=Unnamed dimension=1 values=[2.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.04167]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[a : -2.5, m : 0, b : 2.5]]
Standard representative=Triangular(a = -1, m = 0, b = 1)