1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
// -*- C++ -*-
/**
* @brief The test file of class UserDefinedSpectralModel
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
Scalar clean(Scalar in)
{
// For -0.0 trouble
if (std::abs(in) < 1.e-6) return 0.0;
return in;
//return 1.e-6*round(1.e6*in);
}
HermitianMatrix clean(HermitianMatrix in)
{
UnsignedInteger dim = in.getDimension();
for(UnsignedInteger i = 0; i < dim; i++)
for(UnsignedInteger j = 0; j <= i; j++)
{
Scalar realIJ = clean(real(in(i, j)));
Scalar imagIJ = clean(imag(in(i, j)));
in(i, j) = Complex(realIJ, imagIJ);
}
return in;
}
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
/* Default constructor */
UserDefinedSpectralModel myDefaultModel;
fullprint << "myDefaultModel = " << myDefaultModel << std::endl;
/* Default dimension parameter to evaluate the model */
const UnsignedInteger dimension = 2;
/* Amplitude values */
Point amplitude(dimension);
/* Scale values */
Point scale(dimension);
/* Spatial correclation */
CorrelationMatrix spatialCorrelation(dimension);
for (UnsignedInteger index = 0 ; index < dimension; ++index)
{
// constant amplitude
amplitude[index] = 1.0 ;
scale[index] = (index + 1.0) / dimension ;
if (index > 0) spatialCorrelation(index, index - 1) = 1.0 / index;
}
/* Sample a CauchyModel */
CauchyModel referenceModel(scale, amplitude, spatialCorrelation);
UnsignedInteger size = 5;
UserDefinedSpectralModel::HermitianMatrixCollection dspCollection(size);
RegularGrid frequencyGrid(0.0, 2.0 / size, size);
for (UnsignedInteger i = 0; i < size; ++i)
dspCollection[i] = referenceModel(frequencyGrid.getValue(i));
/* Create a UserDefinedSpectralModel */
UserDefinedSpectralModel myModel(frequencyGrid, dspCollection);
fullprint << "myModel=" << myModel << std::endl;
/* Sample the UserDefinedSpectralModel */
RegularGrid samplingGrid(-0.4, 1.0 / 16, 5 * size);
for (UnsignedInteger i = 0; i < samplingGrid.getN(); ++i)
{
Scalar frequency = samplingGrid.getValue(i);
fullprint << "frequency=" << clean(frequency) << ", myModel=\n" << clean(myModel(frequency)) << ", referenceModel=\n" << clean(referenceModel(frequency)) << std::endl;
}
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|