File: Process.rst_t

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (41 lines) | stat: -rw-r--r-- 1,216 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
{{ objname }}
{{ underline }}{{ underline }}

.. plot::
    :include-source: False

    import openturns as ot
    from matplotlib import pyplot as plt
    import openturns.viewer as otv

    ot.RandomGenerator.SetSeed(0)
    if "{{ objname }}" == "Process":
        # default to Gaussian for the interface class
        process = ot.GaussianProcess()
    elif "{{ objname }}" == "DiscreteMarkovChain":
        process = ot.{{ objname }}()
        process.setTransitionMatrix(ot.SquareMatrix([[0.0,0.5,0.5],[0.7,0.0,0.3],[0.8,0.0,0.2]]))
        origin = 0
        process.setOrigin(origin)
    else:
        process = ot.{{ objname }}()
    process.setTimeGrid(ot.RegularGrid(0.0, 0.02, 50))
    process.setDescription(["$x$"])
    sample = process.getSample(6)
    sample_graph = sample.drawMarginal(0)
    sample_graph.setTitle(str(process))

    fig = plt.figure(figsize=(10, 4))
    sample_axis = fig.add_subplot(111)
    otv.View(sample_graph, figure=fig, axes=[sample_axis], add_legend=False)

.. currentmodule:: {{ module }}

.. autoclass:: {{ objname }}

   {% block methods %}
   .. automethod:: __init__
   {% endblock %}

.. minigallery:: {{module}}.{{objname}}
   :add-heading: Examples using the class