1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
|
.. _bibliography:
============
Bibliography
============
.. [aas2004] Aas K., *Modelling the dependence structure of financial assets: a survey of four copulas*,
Norwegian Computing Center report nr. SAMBA/22/04, December 2004.
.. [abate1992] Abate, J. and Whitt, W. (1992). *The Fourier-series method for
inverting transforms of probability distributions*.
Queueing Systems 10, 5--88., 1992, formula 5.5.
`pdf <http://www.columbia.edu/~ww2040/Fourier-series.pdf>`__
.. [AbdiMolinSalkind2007] Hervé Abdi, Paul Molin. Neil Salkind (Ed.)
*Lilliefors/Van Soest’s test of normality.*. Encyclopedia of Measurement and Statistics, 2007.
.. [AbdiMolin1998] Hervé Abdi, Paul Molin.
*New table and numerical approximations for approximations for Kolmogorov-Smirnov / Lillifors / Van Soest normality test.*, 1998.
.. [acklam2017] Acklam P.J.
*Acklam's algorithm for the inverse normal cdf*, 2017.
https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/
.. [amblard2012] Pierre-Olivier Amblard, Jean-François Coeurjolly,
Frédéric Lavancier, Anne Philippe, *Basic properties of the Multivariate
Fractional Brownian Motion*,
`pdf <https://arxiv.org/pdf/1007.0828.pdf>`__
.. [angelis2015] Angelis M., Patelli E., Beer M., *Advanced line sampling for efficient robust reliability analysis*,
Structural safety, 52 :170-182, 2015.
`pdf <https://livrepository.liverpool.ac.uk/2010225/1/sissue_mda_ep_mb.pdf>`__
.. [arnold2008] Arnold B.C, Balakrishnan N., Nagaraja H. N.,
*A First Course in Order Statistics*, SIAM, 2008
.. [au2001] Au, S. K. *Estimation of small failure probabilities in high
dimensions by subset simulation*. Prob. Eng. Mech., 2001, 16(4), 263-277.
`pdf <http://jimbeck.caltech.edu/papers_pdf/estimation_of_small_failure_probabilities.pdf>`__
.. [Motoyama2025] Hitoshi Motoyama (2025) *The Bahadur representations of quantile estimators in general unequal probability sampling*,
Communications in Statistics - Theory and Methods, 54:13, 3820-3836, DOI: 10.1080/03610926.2024.2406382
`pdf <https://www.tandfonline.com/doi/epdf/10.1080/03610926.2024.2406382?needAccess=true>`__
.. [baudin2015] Baudin M., Dutfoy A., Iooss B., Popelin A.-L. (2015)
*OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation.*
In: Ghanem R., Higdon D., Owhadi H. (eds) Handbook of Uncertainty Quantification. Springer
`pdf <https://arxiv.org/pdf/1501.05242>`__
.. [baron2014] Baron, M. (2019). *Probability and statistics for computer scientists*. CRC press.
.. [beirlant2004] Beirlant J., Goegebeur Y., Teugels J., Segers J.,
*Statistics of extremes: theory and applications*, Wiley, 2004
.. [benton2003] Benton D. and Krishnamoorthy K. (2003). *Computing
discrete mixtures of continuous distributions: noncentral chisquare, noncentral t
and the distribution of the square of the sample multiple correlation coefficient*.
Computational Statistics and Data Analysis, 43 (2003) pp 249-267,
https://www.sciencedirect.com/science/article/abs/pii/S0167947302002839
.. [bhattacharyya1997] Bhattacharyya G.K., and R.A. Johnson, *Statistical
Concepts and Methods*, John Wiley and Sons, New York, 1997.
.. [bjork1996] A. Bjorck (1996),
*Numerical methods for least squares problems*, SIAM Press, Philadelphia.
.. [blatman2009] Blatman, G. *Adaptive sparse polynomial chaos expansions for
uncertainty propagation and sensitivity analysis.*, PhD thesis.
Blaise Pascal University-Clermont II, France, 2009.
`pdf <https://tel.archives-ouvertes.fr/tel-00440197/document>`__
.. [blatman2011] Blatman, G., and Sudret, B..
*Adaptive sparse polynomial chaos expansion based on least angle regression.*
Journal of Computational Physics 230 (2011) 2345–2367.
.. [borgonovo2017] Borgonovo, E. (2017).
*Sensitivity analysis.*
*An Introduction for the Management Scientist.* International Series in
Operations Research and Management Science. Cham, Switzerland : Springer.
.. [burman1989] P. Burman. *Comparative study of Ordinary Cross-Validation,
v-Fold Cross-Validation and the repeated Learning-Testing Methods.*
Biometrika, 76(3):503–514, 1989.
.. [burnham2002] Burnham, K.P., and Anderson, D.R. *Model Selection and
Multimodel Inference: A Practical Information Theoretic Approach*, Springer,
2002.
.. [bingham2010] Bingham, N. H., & Fry, J. M. (2010).
*Regression: Linear models in statistics*. Springer.
.. [Bjorck1996] Björck, Å. (1996). *Numerical methods for least squares problems.*
Society for Industrial and Applied Mathematics.
.. [cambou2017] Mathieu Cambou, Marius Hofert, Christiane Lemieux, *Quasi-Random numbers for copula models*, Stat. Comp., 2017, 27(5), 1307-1329.
`pdf <https://arxiv.org/pdf/1508.03483.pdf>`__
.. [caniou2012] Caniou, Y. *Global sensitivity analysis for nested and
multiscale modelling.* PhD thesis. Blaise Pascal University-Clermont II,
France, 2012.
`pdf <https://tel.archives-ouvertes.fr/tel-00864175/document>`__
.. [ceres2012] Sameer Agarwal and Keir Mierle and Others, *Ceres Solver*,
http://ceres-solver.org
.. [chacon2018] Chacón, J. E., & Duong, T. (2018).
*Multivariate kernel smoothing and its applications.* CRC Press.
.. [charpentier2015] Charpentier, A., & Flachaire, E. (2014).
*Log-Transform Kernel Density Estimation of Income Distribution* WP 2015-Nr 6,
AMSE Aix Marseille School of Economics.
`pdf <https://www.amse-aixmarseille.fr/sites/default/files/_dt/2012/wp_2015_-_nr_06.pdf>`__
.. [chihara1978] Chihara, T. S. (1978).
*An introduction to orthogonal polynomials.* Dover publications.
.. [chapelle2002] Chapelle, O., Vapnik, V., & Bengio, Y. (2002).
*Model selection for small sample regression.* Machine Learning, 48(1-3), 9.
.. [clouvel2025] Clouvel, L., Iooss, B., Chabridon, V., Il Idrissi, M. & Robin, F. (2025).
*An overview of variance-based importance measures in the linear regression context: comparative analyses and numerical tests*,
Socio-Environmental Systems Modeling, vol. 7, 18681, doi:10.18174/sesmo.18681
`pdf <https://sesmo.org/article/view/18681/18319>`__
.. [cminpack2007] Devernay, F. *C/C++ Minpack*, 2007.
http://devernay.free.fr/hacks/cminpack
.. [coles2001] Coles, S. G., *An Introduction to Statistical Modelling of Extreme Values*.
Springer, 2001.
.. [crombecq2011] Crombecq, K., *Surrogate Modelling of Computer Experiments with Sequential Experimental Design*,
PhD thesis, Universiteit Gent, Belgium, 2011.
`pdf <https://backoffice.biblio.ugent.be/download/1970716/1971191>`__
.. [dagostino1986] D'Agostino, R.B. and Stephens, M.A. *Goodness-of-Fit Techniques*,
Marcel Dekker, Inc., New York, 1986.
.. [dahlquist2008] Dahlquist, G. and Björck, A. *Numerical methods in scientific computing*,
volume I. Society for Industrial and Applied Mathematics. 2008
.. [damblin2013] G. Damblin, M. Couplet and B. Iooss. *Numerical studies
of space filling designs: optimization of Latin hypercube samples and
subprojection properties.* Journal of Simulation, 7:276-289, 2013.
`pdf <https://arxiv.org/pdf/1307.6835.pdf>`__
.. [david1981] David, H.A. (1981). *Order statistics.*, New-York:Wiley.
.. [daveiga2015] Da Veiga, S. (2015). *Global sensitivity analysis with dependence measures.*
Journal of Statistical Computation and Simulation, 85(7), 1283-1305.
.. [daveiga2022] Da Veiga, S., Gamboa, F., Iooss, B., and Prieur, C. (2021).
*Basics and trends in sensitivity analysis: theory and practice in R.*
Society for Industrial and Applied Mathematics.
.. [davis1975] Davis, P.-J. and P.Rabinowitz, P. (1975). *Methods of numerical integration*,
Academic Press.
.. [delmas2006] Delmas, J.F. and Jourdain, B. *Modèles aléatoires: Applications aux
sciences de l'ingénieur et du vivant* , Berlin, Heidelberg: Springer Berlin Heidelberg (2006).
*La maîtrise des incertitudes dans un contexte industriel.
1re partie: une approche méthodologique globale basée sur des exemples.*
Journal de la Société française de statistique, 147 (3), 33-71.
.. [deRocquigny2006] De Rocquigny, É. (2006).
*La maîtrise des incertitudes dans un contexte industriel.
1re partie: une approche méthodologique globale basée sur des exemples.*
Journal de la Société française de statistique, 147 (3), 33-71.
.. [deRocquigny2012] De Rocquigny, E. (2012).
*Modelling under risk and uncertainty.* John Wiley & Sons.
.. [deisenroth2020] Deisenroth, M. P., Faisal, A. A., and Ong, C. S. (2020).
*Mathematics for machine learning.* Cambridge University Press.
.. [devroye1986] Devroye L, *Non-Uniform RandomVariate Generation*,
Springer-Verlag, New York, 1986
`pdf <http://luc.devroye.org/handbooksimulation1.pdf>`__
.. [devroye1986b] Devroye L, *Non-Uniform RandomVariate Generation - Errata*
.. [diebolt2008] Diebolt J., *Improving probability-weighted moment methods for the generalized extreme value distribution*,
REVSTAT Statistical Journal, 2008.
`pdf <https://www.ine.pt/revstat/pdf/rs080103.pdf>`__
.. [dimitriadis2016] Dimitriadis J., *On the Accuracy of Loader's Algorithm for
the Binomial Density and Algorithms for Rectangle Probabilities for Markov
Increments*, PhD thesis.
Trier University, 2016.
`pdf <https://ubt.opus.hbz-nrw.de/opus45-ubtr/frontdoor/deliver/index/docId/758/file/DissertationDimitriadis.pdf>`__
.. [dixon1983] Dixon, W.J., Massey, F.J, *Introduction to statistical analysis*
4th ed., McGraw-Hill, 1983
.. [dlib2009] Davis E. King, *Dlib-ml: A Machine Learning Toolkit*,
Journal of Machine Learning Research, 10:1755-1758, 2009.
.. [dobrolowski2014] Dobrolowski, E. and Kumar, P., *Some properties of the Marshall-Olkin and generalized Cuadras-Augé families of copulas*,
The Australian Journal of Mathematical Analysis and Applications, 11(1), 1-13, 2014.
`pdf <https://ajmaa.org/searchroot/files/pdf/v11n1/v11i1p2.pdf>`__
.. [doornik2005] Doornik, J.A. *An Improved Ziggurat Method to Generate Normal Random Samples*,
mimeo, Nuffield College, University of Oxford, 2005.
`pdf <https://www.doornik.com/research/ziggurat.pdf>`__
.. [dubourg2011] Dubourg, V. *Adaptative surrogate models for reliability and reliability-based design optimization*,
University Blaise Pascal - Clermont II, 2011.
`pdf <https://tel.archives-ouvertes.fr/tel-00697026v2/document>`__
.. [ernst2012] Ernst, O. G., Mugler, A., Starkloff, H. J., & Ullmann, E. (2012).
*On the convergence of generalized polynomial chaos expansions.*
ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339.
.. [fang2006] K-T. Fang, R. Li, and A. Sudjianto. *Design and modeling for
computer experiments.* Chapman & Hall CRC, 2006.
.. [faraway2014] Faraway, J. J. (2014). *Linear models with R*. Second Edition CRC press.
.. [feller1970] Feller W.,
*An Introduction to Probability Theory and Its Application*, John Wiley \& Sons,
2nd edition, Vol. 2.
.. [fischer2017] Fischer, R. (2017). *Modelling the dependence of order
statistics and nonparametric estimation*.
`pdf <https://pastel.hal.science/tel-01526823/file/TH2016PESC1039.pdf>`__
.. [freedman1981] David Freedman, Persi Diaconis, *On the histogram as a density
estimator: L2 theory*, December 1981, Probability Theory and Related Fields.
57 (4): 453–476.
.. [gamboa2013] Gamboa, F., Janon, A., Klein, T. & Lagnoux, A. *Sensitivity
analysis for multidimensional and functional outputs.* 2013.
`pdf <https://arxiv.org/pdf/1311.1797.pdf>`__
.. [gamboa2022] Gamboa, F., Gremaud, P., Klein, T. & Lagnoux, A. *Global sensitivity analysis:
A novel generation of mighty estimators based on rank statistics* Bernoulli 28(4): 2345-2374, 2022.
`pdf <https://hal.science/hal-02474902v4/file/New_Look_Bernoulli_4.pdf>`__
.. [garnier2008] Garnier, J. *Quantile estimation* ECODOQUI 2008
.. [gautschi2004] Gautschi, W. (2004).
*Orthogonal polynomials: computation and approximation.* OUP Oxford.
.. [genz2003] Genz A., Cools R., *An adaptive numerical cubature algorithm for simplices*,
ACM Transactions on Mathematical Software 29(3):297-308, September 2003.
`pdf <https://www.researchgate.net/publication/220492882_An_adaptive_numerical_cubature_algorithm_for_simplices>`__
.. [ghanem1991] Ghanem R. and P. Spanos, 1991,
*Stochastic finite elements - A spectral approach*,
Springer Verlag. (Reedited by Dover Publications, 2003).
.. [gerstner1998] Gerstner, T., & Griebel, M. (1998). *Numerical integration using
sparse grids.* Numerical algorithms, 18 (3), 209-232.
`pdf <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.3141&rep=rep1&type=pdf>`__
.. [girardin2018] Girardin, V., & Limnios, N. (2018).
*Applied probability.* From Random Sequences to Stochastic Processes (Springer, Cham).
.. [gretton2005] Gretton, A., Bousquet, O., Smola, A., & Schölkopf, B. (2005, October).
*Measuring statistical dependence with Hilbert-Schmidt norms.* In International conference on
algorithmic learning theory (pp. 63-77). Springer, Berlin, Heidelberg.
.. [gobet2016] Gobet, E., 2016, *Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear*,
Chapman \& Hall/CRC.
.. [ginsbourger2018] Ginsbouger, D., 2018 *Sequential Design of Computer Experiments*,
Wiley StatsRef: Statistics Reference Online, Wiley
.. [hormann1993] Hormann W., *The generation of Binomial Random Variates* Journal
of Statistical Computation and Simulation 46, pp. 101-110, 1993.
`pdf <https://epub.wu.ac.at/1242/1/document.pdf>`__
.. [hahn2005] Thomas Hahn, *Cuba - a library for multidimensional numerical integration*
Computer Physics Communications, 168(2), 78-95.
`pdf <https://arxiv.org/pdf/hep-ph/0404043>`__
.. [halko2010] Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, *Finding
structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions*,
`pdf <https://arxiv.org/pdf/0909.4061.pdf>`__
.. [halko2011] Nathan Halko, Per-Gunnar Martisson, Yoel Shkolnisky and Mark Tygert,
*An algorithm for the principal component analysis of large data sets*,
`pdf <https://arxiv.org/pdf/1007.5510.pdf>`__
.. [hammersley1961] Hammersley, J. M., & Handscomb, D. C. (1961).
*Monte Carlo Methods.* Chapman and Hall. Monographs on Statistics and Applied Probability.
.. [hastie2009] Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009).
*The elements of statistical learning: data mining, inference, and prediction.*
New York: springer.
.. [helton2003] Helton, J.C., and Davis, F. J.,
*Latin Hypercube sampling and the propagation of uncertainty analyses of complex systems*,
Reliability Engineering and System Safety 81, 23-69.
`pdf <https://web.archive.org/web/20141222122431id_/http://www.stat.unm.edu:80/~storlie/st579/articles/RESS_2003_LHS.pdf>`__
.. [hotelling1933] Hotelling, H. (1933).
*Analysis of a complex of statistical variables into principal components.*
Journal of educational psychology, 24(6):417.
.. [iooss2015] Iooss B., Lemaître P. (2015) *A review on global sensitivity
analysis methods.* In: Meloni C., Dellino G. (eds) Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, Springer.
`pdf <https://arxiv.org/pdf/1404.2405>`__
.. [jackson1991] Jackson, J. E. (1991).
*A user’s guide to principal components.*
John Wiley & Sons.
.. [janon2014] Janon A., Klein T., Lagnoux-Renaudie A., Prieur C., *Asymptotic
normality and efficiency of two Sobol index estimators*,
ESAIM: Probability and Statistics, EDP Sciences, 2014, 18, pp.342-364.
`pdf <https://hal.inria.fr/hal-00665048/document>`__
.. [jansen1999] Jansen, M.J.W. *Analysis of variance designs for model output*,
Computer Physics Communication, 1999, 117, 35-43.
`pdf <https://openturns.github.io/openturns/papers/jansen1999.pdf>`__
.. [jin2005] R. Jin, W. Chen, and A. Sudjianto. *An efficient algorithm for
constructing optimal design of computer experiments.*
Journal of Statistical Planning and Inference, 134 :268-287, 2005.
`pdf <https://openturns.github.io/openturns/papers/jin2005.pdf>`__
.. [johnson1990] Johnson M, Moore L and Ylvisaker D (1990).
*Minimax and maximin distance design.*
Journal of Statistical Planning and Inference 26(2): 131-148.
.. [jolliffe2002] Jolliffe, I. T. (2002).
*Principal component analysis.*
Springer.
.. [jones1998] Donald R. Jones, Matthias Schonlau and William J Welch.
*Global optimization of expensive black-box functions*,
Journal of Global Optimization, 13(4), 455-492, 1998.
`pdf <https://openturns.github.io/openturns/papers/jones1998.pdf>`__
.. [jones1993] M.C. Jones,
*Simple boundary correction for kernel density estimation*,
Statistics and Computing. Vol. 3, Issue 3, 1993, pp. 135-146,
https://doi.org/10.1007/BF00147776
.. [kallenberg2021] Kallenberg, O.
*Fundations of Modern Probability*,
Springer, 3rd edition, 2021.
.. [Keutelian1991] Hovhannes Keutelian.
*The Kolmogorov-Smirnov test when parameters are estimated from data*,
30 April 1991, Fermilab.
.. [kiureghian1998] Kiureghian A., Dakessian T., *Multiple design points in first and second-order reliability*
Structural Safety, Volume 20, Issue 1, 1998, Pages 37-49
`pdf <https://openturns.github.io/openturns/papers/kiureghian1998.pdf>`__
.. [kleijnen1999] Kleijnen J. P. C., Helton J. C.,
*Statistical analyses of scatterplots to identify factors in large-scale simulations, 1: Review and comparison of techniques.*
Reliability Engineering and System Safety 65, 147-185
`pdf <https://www.osti.gov/servlets/purl/5004>`__
.. [knight1966] Knight, W. R. *A Computer Method for Calculating Kendall's Tau
with Ungrouped Data.* Journal of the American Statistical Association,
1966, 61(314, Part 1), 436-439.
`pdf <https://openturns.github.io/openturns/papers/knight1966.pdf>`__
.. [knio2006] Knio, O. M., & Le Maitre, O. P. (2006). *Uncertainty propagation in
CFD using polynomial chaos decomposition.* Fluid dynamics research, *38* (9), 616.
.. [knio2010] Le Maître, O., & Knio, O. M. (2010). *Spectral methods for uncertainty
quantification: with applications to computational fluid dynamics.* Springer
Science & Business Media.
.. [ko1994] William L. Ko, Raymond H. Jackson,
*Share Buckling Analysis of a Hat-Stiffend Panel*, NASA Technical Memorandum 4644 (November 1994).
.. [koay2006] Koay C.G., Basser P.J.,
*Analytically exact correction scheme for signal extraction from noisy magnitude MR signals*,
Journal of magnetics Resonance 179, 317-322, 2006.
.. [koehler1996] J.R. Koehler and A.B. Owen. *Computer experiments. In S. Ghosh
and C.R. Rao, editors, Design and analysis of experiments,
volume 13 of Handbook of statistics.* Elsevier, 1996.
.. [koutsourelakis2004] Koutsourelakis, H. Pradlwarter, G. Schueller,
*Reliability of structures in high dimensions, part i: algorithms and applications*,
Probabilistic Engineering Mechanics 19 (4) (2004) 409–417
.. [lebrun2009a] Lebrun, R. & Dutfoy, A. *An innovating analysis of the Nataf
transformation from the copula viewpoint.* Prob. Eng. Mech., 2009, 24,
312-320.
`pdf <https://www.researchgate.net/profile/Regis_Lebrun/publication/245186106_An_innovating_analysis_of_the_Nataf_transformation_from_the_copula_viewpoint/links/5ab4ac1faca272171004264f/An-innovating-analysis-of-the-Nataf-transformation-from-the-copula-viewpoint.pdf>`__
.. [lebrun2009b] Lebrun, R. & Dutfoy, A. *A generalization of the Nataf
transformation to distributions with elliptical copula.* Prob. Eng. Mech.,
2009, 24, 172-178.
`pdf <https://www.researchgate.net/profile/Regis_Lebrun/publication/229410827_A_generalization_of_the_Nataf_transformation_to_distribution_with_copula/links/59e47955458515393d60e7f1/A-generalization-of-the-Nataf-transformation-to-distribution-with-copula.pdf>`__
.. [lebrun2009c] Lebrun, R. & Dutfoy, A. *Do Rosenblatt and Nataf
isoprobabilistic transformations really differ?* Prob. Eng. Mech., 2009,
24, 577-584.
`pdf <https://openturns.github.io/openturns/papers/lebrun2009c.pdf>`__
.. [legratiet2017] Le Gratiet, L., Marelli, S., & Sudret, B. (2017).
*Metamodel-based sensitivity analysis: polynomial chaos expansions and
Gaussian processes.* In Handbook of uncertainty quantification
1289-1325. Springer, Cham.
.. [lecuyer2005] L’Ecuyer P., Lemieux C. (2005) Recent Advances in Randomized
Quasi-Monte Carlo Methods. In: Dror M., L’Ecuyer P., Szidarovszky F. (eds)
Modeling Uncertainty. International Series in Operations Research &
Management Science, vol 46. Springer, Boston, MA
`pdf <https://www.researchgate.net/profile/Pierre_LEcuyer/publication/226670289_Recent_Advances_in_Randomized_Quasi-Monte_Carlo_Methods/links/0deec52dd9d449512b000000/Recent-Advances-in-Randomized-Quasi-Monte-Carlo-Methods.pdf>`__
.. [lemaire2009] Lemaire M., *Structural reliability*, John Wiley & Sons, 2009.
.. [lemaitre2010] Le Maître, O., & Knio, O. M. (2010).
*Spectral methods for uncertainty quantification: with applications to computational fluid dynamics*. Springer Science & Business Media.
.. [lemieux2009] Lemieux, C. (2009). *Monte Carlo and Quasi-Monte Carlo Sampling*.
Springer. Springer Series in Statistics.
.. [leriche2021] Le Riche, R., & Picheny, V. (2021). *Revisiting Bayesian optimization in the
light of the COCO benchmark.* Structural and Multidisciplinary
Optimization, 64, 3063-3087.
.. [liu2006] Liu, R., & Owen, A. B. (2006). *Estimating mean dimensionality of
analysis of variance decompositions.* Journal of the American Statistical
Association, 101 (474), 712-721.
.. [Lilliefors1967] *On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown*
Hubert W. Lilliefors
Journal of the American Statistical Association,
Vol. 62, No. 318. (Jun., 1967), pp. 399-402.
`pdf <http://www.bios.unc.edu/~mhudgens/bios/662/2008fall/Backup/lilliefors1967.pdf>`__
.. [Limbourg2010] Limbourg, P., & De Rocquigny, E. (2010).
*Uncertainty analysis using evidence theory–confronting level-1 and
level-2 approaches with data availability and computational constraints.*
Reliability Engineering & System Safety, 95(5), 550-564.
.. [loader2000] Loader C. *Fast and Accurate Computation of Binomial Probabilities*,
`pdf <https://www.r-project.org/doc/reports/CLoader-dbinom-2002.pdf>`__
.. [luke] Luke Gustafson. The Spearman Rho null distribution. https://www.luke-g.com/math/spearman/index.html
.. [luo2018] Zhendong Luo, Goong Chen
*Proper Orthogonal Decomposition Methods for Partial Differential Equations.*
(2018) Academic Press.
.. [marelli2018] S. Marelli, B. Sudret, *An active-learning algorithm that combines sparse
polynomial chaos expansions and bootstrap for structural reliability analysis*, Structural Safety, 2018.
`pdf <https://arxiv.org/pdf/1709.01589.pdf>`__
.. [marrel2021] Marrel, A., & Chabridon, V. (2021). *Statistical developments for target and conditional sensitivity analysis:
application on safety studies for nuclear reactor.* Reliability Engineering & System Safety, 107711.
.. [marsaglia1993] Marsaglia G. and Tsang W. W. *A Simple Method for Generating Gamma*,
Journal of Statistical Computational and Simulation, vol 46, pp101 - 110,1993.
https://www.researchgate.net/publication/220492850_A_simple_method_for_generating_Gamma_Variables
.. [marsaglia2000] Marsaglia G. and Tsang W.W.
*A simple method for generating gamma variables*,
ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages
363-372
https://dl.acm.org/doi/10.1145/358407.358414
.. [martinez2011] Martinez, J-M., *Analyse de sensibilite globale par decomposition de la variance*,
Presentation in the meeting of GdR Ondes and GdR MASCOT-NUM,
January, 13th, 2011, Institut Henri Poincare, Paris, France
.. [matthys2003] G. Matthys & J. Beirlant,
*Estimating the extreme value index and high quantiles with exponential regression models*,
Statistica Sinica, 13, 850-880, 2003.
`pdf <http://www3.stat.sinica.edu.tw/statistica/oldpdf/A13n316.pdf>`__
.. [mauricio1995] J. A. Mauricio,
*Exact Maximum Likelihood Estimation of Stationary Vector ARMA Models*,
Journal of the American Statistical Association 90, 282-291, 1995.
`pdf <https://openturns.github.io/openturns/papers/mauricio1995.pdf>`__
.. [mckay1979] McKay M, Beckman R and Conover W (1979). *A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code.* Technometrics 21(2): 239-245.
`pdf <https://www.asc.ohio-state.edu/statistics/comp_exp/jour.club/McKayConoverBeckman.pdf>`__
.. [meeker2017] Meeker, W. Q. Hahn, G. J., and Escobar, L.A. (2017).
*Statistical intervals : a guide for practitioners and researchers*, John Wiley & Sons
.. [melchers1990] Melchers, R. E. (1990).
*Radial importance sampling for structural reliability.* Journal of engineering mechanics, 116(1), 189-203.
.. [minka2012] Thomas P. Minka,
*Estimating a Dirichlet distribution*, Microsoft Research report, 2000 (revised 2003, 2009, 2012).
`pdf <http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf>`__
.. [morio2015] Morio J., Balesdent M., *Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems*,
A Practical Approach, Elsevier, 2015.
.. [morris1995] D. Morris and J. Mitchell. *Exploratory designs for
computational experiments.*
Journal of Statistical Planning and Inference, 43 :381-402, 1995.
`pdf <https://www.osti.gov/servlets/purl/10184343>`__
.. [morokoff1995] Morokoff, W. J., & Caflisch, R. E. (1995). *Quasi-Monte Carlo
integration.* Journal of computational physics, 122(2), 218-230.
`pdf <https://www.math.ucla.edu/~caflisch/Pubs/Pubs1995-1999/actaNumerica1998.pdf>`__
.. [muller2016] Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. " O'Reilly Media, Inc.".
.. [munoz2011] M. Munoz Zuniga, J. Garnier, E. Remy and E. de Rocquigny,
*Adaptative Directional Stratification for controlled estimation of the
probability of a rare event*, Reliability Engineering and System Safety,
2011.
`pdf <https://josselin-garnier.org/wp-content/uploads/2013/12/munoz_ress.pdf>`__
.. [nataf1962] Nataf, A. *Determination des distributions dont les marges sont
donnees.* C. R. Acad. Sci. Paris, 1962, 225, 42-43.
`pdf <https://openturns.github.io/openturns/papers/nataf1962.pdf>`__
.. [nash1999] Stephen G. Nash, 1999, *A survey of Truncated-Newton methods*,
Systems Engineering and Operations Research Dept.,
George Mason University, Fairfax, VA 22030.
`pdf <https://core.ac.uk/download/pdf/82362441.pdf>`__
.. [johnson1995] Johnson, N. L. and Kotz, S; and Balakrishnan, N., *Continuous univariate distributions volume 2*,
second edition, 1995, Wiley Inter-Science.
.. [nelsen2006] Roger B. Nelsen, *An Introduction to Copulas 2nd Edition*,
Springer, 2006.
.. [NikitinTchirina2007] Ya. Yu. Nikitin and A.V.Tchirina.
*Lilliefors Test for Exponentiality: Large Deviations,Asymptotic Efficiency, and Conditions of Local Optimality.*
Mathematical Methods of Statistics 16.1 (2007): 16-24.
.. [nisthandbook] NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/
.. [nlopt2009] Steven G. Johnson, The NLopt nonlinear-optimization package,
http://ab-initio.mit.edu/nlopt
.. [novak1999] Novak, E., & Ritter, K. (1999).
Simple cubature formulas with high polynomial exactness.
Constructive approximation, 15, 499-522.
.. [park1990] Byeong U. Park and J. S. Marron.
*Comparison of data-driven bandwidth selectors.*
Journal of the American Statistical Association, 85(409) :66–72, 1990.
.. [pearson1907] Pearson, K. (1901).
*On lines and planes of closest fit to systems of points in space.*
The London, Edinburgh, and Dublin philosophical magazine and journal of
science, 2(11):559–572.
.. [pelamatti2020] Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E. G., & Guerin, Y. (2020).
*Overview and comparison of gaussian process-based surrogate models for mixed continuous and discrete variables: Application on aerospace design problems.*
High-Performance Simulation-Based Optimization, 189-224.
.. [peng2014] L. Peng, R. Wang, *Interval Estimation for Bivariate t-Copulas via Kendall's Tau*
Casualty Actuarial Society, Volume 8/Issue 1, 2014.
`pdf <https://sas.uwaterloo.ca/~wang/papers/2014PW(Variance).pdf>`__
.. [peter2019] Jacques Peter, Eric Savin, Itham Salah el Din.
Generalized polynomial chaos and stochastic collocation methods
for uncertainty quantification in aerodynamics.
STO-AVT-326 Uncertainty Quantification in Computational Fluid Dynamics.
.. [petras2003] Petras, K. (2003). *Smolyak cubature of given polynomial
degree with few nodes for increasing dimension.* Numerische Mathematik,
93 (4), 729-753.
.. [pmfre01116] Dumas A., *Lois asymptotiques des estimateurs des indices de Sobol'*,
Technical report, Phimeca, 2018.
`pdf <https://openturns.github.io/openturns/papers/RT-PMFRE-01116-001C_-_Rapport_loi_estimateur_sobol.pdf>`__
.. [pronzato2012] Pronzato L and Muller W (2012).
*Design of computer experiments: Space filling and beyond.*
Statistics and Computing 22(3): 681-701.
`pdf <https://hal.archives-ouvertes.fr/hal-00685876/document>`__
.. [raykar2006] Vikas Chandrakant Raykar, Ramani Duraiswami
*Very Fast optimal bandwidth selection for univariate kernel density estimation.*
CS-TR-4774. University of Maryland, College Park, MD 20783, 2006
.. [rawlings2001] Rawlings, J. O., Pantula, S. G., and Dickey, D. A.
*Applied regression analysis: a research tool.*
Springer Science and Business Media, 2001.
.. [robert2015] Robert, C. P.
*The Metropolis-Hastings algorithm.*
arXiv preprint arXiv:1504.01896, 2015.
`pdf <https://arxiv.org/pdf/1504.01896.pdf>`__
.. [robertson2024] Robertson, G., Sjöstrand, H., Andersson, P., Göök, A. and Blair, P.
*Addressing model inadequacy in fuel performance model calibration using MH-within-gibbs sampling.*
Best Estimate Plus Uncertainty International Conference (BEPU 2024), Real Collegio, Lucca, Tuscany, Italy, May 19–24, 2024.
Nuclear and Industrial Engineering (NINE)
`pdf <https://www.diva-portal.org/smash/get/diva2:1865473/FULLTEXT01.pdf>`__
.. [rosenblatt1952] Rosenblatt, M. *Remarks on a multivariate transformation.*
Ann. Math. Stat., 1952, 23, 470-472.
`pdf <https://projecteuclid.org/download/pdf_1/euclid.aoms/1177729394>`__
.. [rota1964] Rota, G. C. (1964). *On the foundations of combinatorial theory I.*
*Theory of Möbius functions.*.
Z. Wahrseheinlichkeitstheorie, volume 2, pages 340-368.
.. [rubinstein2017] Rubinstein, R. Y., & Kroese, D. P. (2017). *Simulation and the Monte Carlo method.* John Wiley & Sons.
`pdf <https://kgut.ac.ir/useruploads/1509987964985oqk.pdf>`__
.. [rudin1987] Rudin, W. *Real and complex analysis* 1987.
.. [saltelli1999] Saltelli, A., Tarantola, S. and Chan, K. *A quantitative, model
independent method for global sensitivity analysis of model output.*
Technometrics, 1999, 41(1), 39-56.
`pdf <http://www.andreasaltelli.eu/file/repository/Saltelli_Technom.pdf>`__
.. [saltelli2000] Saltelli, A., Chan, K. and Scott, M. *Sensitivity analysis.*
John Wiley and Sons publishers, Probability and statistics series, 2000.
`pdf <http://www.andreasaltelli.eu/file/repository/Saltelli_Technom.pdf>`__
.. [saltelli2002] Saltelli, A. *Making best use of model evaluations to compute
sensitivity indices.* Computer Physics Communication, 2002, 145, 580-297.
`pdf <http://www.andreasaltelli.eu/file/repository/Making_best_use.pdf>`__
.. [sankararaman2012] Sankararaman, S. and Mahadevan, S. *Likelihood-based approach to multidisciplinary analysis under uncertainty.*
Journal of Mechanical Design, 134(3):031008, 2012.
.. [santner2003] Santner, T. J., Williams, B. J., Notz, W. I., & Williams, B. J. (2003).
*The design and analysis of computer experiments*. New York: Springer.
.. [saporta1990] Saporta, G. (1990). *Probabilités, Analyse de données et
Statistique*, Technip
.. [scott1992] Scott, D. W. (1992). *Multivariate density estimation*,
John Wiley & Sons, Inc.
.. [scott2015] Scott, D. W. (2015).
*Multivariate density estimation: theory, practice, and visualization.*
John Wiley & Sons.
.. [ScottStewart2011] W. F. Scott & B. Stewart.
*Tables for the Lilliefors and Modified Cramer–von Mises Tests of Normality.*,
Communications in Statistics - Theory and Methods. Volume 40, 2011 - Issue 4. Pages 726-730.
.. [segers2016] J. Segers & M. Sibuya & H. TsukaharaSen (2016). *The Empirical Beta Copula*,
`pdf <https://arxiv.org/pdf/1607.04430>`__
.. [sen1990] Sen, A., & Srivastava, M. (1990). *Regression analysis: theory, methods, and applications*.
Springer.
.. [shao1993] Shao, J. (1993). *Linear model selection by cross-validation.*
Journal of the American statistical Association. 88 (422), 486-494.
.. [sheather1991] Sheather, S. J. and Jones, M. C. (1991).
*A reliable data-based bandwidth selection method for kernel density estimation.*
Journal of the Royal Statistical Society. Series B (Methodological),
53(3) :683–690.
.. [simard2011] Simard, R. & L'Ecuyer, P. *Computing the Two-Sided Kolmogorov-
Smirnov Distribution.* Journal of Statistical Software, 2011, 39(11), 1-18.
`pdf <https://www.jstatsoft.org/article/view/v039i11/v39i11.pdf>`__
.. [silverman1982] B. W. Silverman
*Algorithm AS 176: Kernel Density Estimation Using the Fast Fourier Transform.*
Journal of the Royal Statistical Society. Series C (Applied Statistics),
Vol. 31, No. 1 (1982), pp. 93-99 (7 pages)
.. [silverman1986] Silverman, B. W. (1986).
*Density estimation.* (Chapman Hall, London).
.. [sobol1993] Sobol, I. M. *Sensitivity analysis for non-linear mathematical
model* Math. Modelling Comput. Exp., 1993, 1, 407-414.
`pdf <https://openturns.github.io/openturns/papers/sobol1993.pdf>`__
.. [sobol2007] Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S.S. and
Mauntz, W. *Estimating the approximation errors when fixing unessential
factors in global sensitivity analysis*, Reliability Engineering and System
Safety, 2007, 92, 957-960.
`pdf <https://openturns.github.io/openturns/papers/sobol2007.pdf>`__
.. [soizeghanem2004] Soize, C., Ghanem, R. *Physical systems with random
uncertainties: Chaos representations with arbitrary probability measure*,
SIAM Journal on Scientific Computing, Society for Industrial and Applied
Mathematics, 2004, 26 (2), 395-410.
`pdf <https://hal.archives-ouvertes.fr/hal-00686211/document>`__
.. [sprent2001] Sprent, P., and Smeeton, N.C. *Applied Nonparametric
Statistical Methods*, Third edition, Chapman & Hall, 2001.
.. [stadlober1990] Stadlober E., *The ratio of uniforms approach for generating
discrete random variates*. Journal of Computational and Applied Mathematics,
vol. 31, no. 1, pp. 181-189, 1990.
`pdf <https://openturns.github.io/openturns/papers/stadlober1990.pdf>`__
.. [stein1987] Stein, M. (1987). *Large sample properties of simulations using Latin hypercube sampling.*
Technometrics, 29(2), 143-151.
.. [stone1974] Stone, M. (1974). *Cross‐validatory choice and assessment of statistical predictions.*
Journal of the royal statistical society: Series B (Methodological), 36 (2), 111-133.
.. [stoer1993] Stoer, J., Bulirsch, R. *Introduction to Numerical
Analysis*, Second Edition, Springer-Verlag, 1993.
`pdf <https://zhilin.math.ncsu.edu/TEACHING/MA580/Stoer_Bulirsch.pdf>`__
.. [sudret2006] Sudret, B. (2006). *Global sensitivity analysis using polynomial
chaos expansions.* In. Proceedings of the 5th International Conference
on Computational Stochastic Mechanics (CSM5), Rhodos (2006)
.. [sudret2008] Sudret, B. (2008). *Global sensitivity analysis using polynomial
chaos expansions.* Reliability engineering & system safety, *93* (7), 964-979.
.. [sullivan2015] Sullivan, T. J. (2015). *Introduction to uncertainty quantification*, Vol. 63. Springer.
.. [vaart2000] Van der Vaart, A. W. (2000). *Asymptotic statistics*. Cambridge university press.
.. [suzuki2020] Suzuki, J. (2020). *Statistical Learning with Math and R*. Springer, Berlin.
.. [wand1994] Wand M.P, Jones M.C. *Kernel Smoothing*
First Edition, Chapman & Hall, 1994.
.. [wang2012] Wang, Y. *Model selection.* (2012).
In Handbook of computational statistics (pp. 469-497). Springer, Berlin, Heidelberg.
.. [wertz1999] Wertz, J. and Larson, W. *Space Mission Analysis and Design.*
Microcosm, Inc. Torrance, CA.,1999.
.. [wilks1948] Wilks, S. S. (1948). Order statistics. Bulletin of the American Mathematical Society, 54(1) :6–50.
.. [robert2004] Robert C.P., Casella G. *Monte-Carlo Statistical Methods*, Springer, ISBN 0-387-21239-6, 2nd ed, 2004.
.. [witkovsky2003] Witkovsky V. *A Note on Computing Extreme Tail Probabilities of the Noncentral T Distribution with Large Noncentrality Parameter.*
Computational Statistics & Data Analysis, 43 (2003) pp 249-267
.. [xiu2010] Xiu, D. (2010).
*Numerical methods for stochastic computations: a spectral method approach.*
Princeton university press.
.. [zaman2012] Zaman, K. *Modeling and management of epistemic uncertainty for multidisciplinary system analysis and design.*
PhD thesis, Vanderbilt University, USA, 2012
.. [zhang2020] Zhang, Y., Tao, S., Chen, W., & Apley, D. W. *A latent variable approach to Gaussian process modeling with qualitative and quantitative factors*
Technometrics 62.3 (2020): 291-302.
|