File: bibliography.rst

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (547 lines) | stat: -rw-r--r-- 38,067 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
.. _bibliography:

============
Bibliography
============
.. [aas2004] Aas K., *Modelling the dependence structure of financial assets: a survey of four copulas*,
    Norwegian Computing Center report nr. SAMBA/22/04, December 2004.
.. [abate1992] Abate, J. and Whitt, W. (1992). *The Fourier-series method for
    inverting transforms of probability distributions*.
    Queueing Systems 10, 5--88., 1992, formula 5.5.
    `pdf <http://www.columbia.edu/~ww2040/Fourier-series.pdf>`__
.. [AbdiMolinSalkind2007] Hervé Abdi, Paul Molin. Neil Salkind (Ed.)
    *Lilliefors/Van Soest’s test of normality.*. Encyclopedia of Measurement and Statistics, 2007.
.. [AbdiMolin1998] Hervé Abdi, Paul Molin.
    *New table and numerical approximations for approximations for Kolmogorov-Smirnov / Lillifors / Van Soest normality test.*, 1998.
.. [acklam2017] Acklam P.J.
    *Acklam's algorithm for the inverse normal cdf*, 2017.
    https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/
.. [amblard2012] Pierre-Olivier Amblard, Jean-François Coeurjolly,
    Frédéric Lavancier, Anne Philippe, *Basic properties of the Multivariate
    Fractional Brownian Motion*,
    `pdf <https://arxiv.org/pdf/1007.0828.pdf>`__
.. [angelis2015] Angelis M., Patelli E., Beer M., *Advanced line sampling for efficient robust reliability analysis*,
    Structural safety, 52 :170-182, 2015.
    `pdf <https://livrepository.liverpool.ac.uk/2010225/1/sissue_mda_ep_mb.pdf>`__
.. [arnold2008] Arnold B.C, Balakrishnan N., Nagaraja H. N.,
    *A First Course in Order Statistics*, SIAM, 2008
.. [au2001] Au, S. K. *Estimation of small failure probabilities in high
    dimensions by subset simulation*. Prob. Eng. Mech., 2001, 16(4), 263-277.
    `pdf <http://jimbeck.caltech.edu/papers_pdf/estimation_of_small_failure_probabilities.pdf>`__
.. [Motoyama2025] Hitoshi Motoyama (2025) *The Bahadur representations of quantile estimators in general unequal probability sampling*,
     Communications in Statistics - Theory and Methods, 54:13, 3820-3836, DOI: 10.1080/03610926.2024.2406382
     `pdf <https://www.tandfonline.com/doi/epdf/10.1080/03610926.2024.2406382?needAccess=true>`__
.. [baudin2015] Baudin M., Dutfoy A., Iooss B., Popelin A.-L. (2015)
    *OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation.*
    In: Ghanem R., Higdon D., Owhadi H. (eds) Handbook of Uncertainty Quantification. Springer
    `pdf <https://arxiv.org/pdf/1501.05242>`__
.. [baron2014] Baron, M. (2019). *Probability and statistics for computer scientists*. CRC press.
.. [beirlant2004] Beirlant J., Goegebeur Y., Teugels J., Segers J.,
    *Statistics of extremes: theory and applications*, Wiley, 2004
.. [benton2003] Benton D. and Krishnamoorthy K. (2003). *Computing
    discrete mixtures of continuous distributions: noncentral chisquare, noncentral t
    and the distribution of the square of the sample multiple correlation coefficient*.
    Computational Statistics and Data Analysis, 43 (2003) pp 249-267,
    https://www.sciencedirect.com/science/article/abs/pii/S0167947302002839
.. [bhattacharyya1997] Bhattacharyya G.K., and R.A. Johnson, *Statistical
    Concepts and Methods*, John Wiley and Sons, New York, 1997.
.. [bjork1996] A. Bjorck (1996),
    *Numerical methods for least squares problems*, SIAM Press, Philadelphia.
.. [blatman2009] Blatman, G. *Adaptive sparse polynomial chaos expansions for
    uncertainty propagation and sensitivity analysis.*, PhD thesis.
    Blaise Pascal University-Clermont II, France, 2009.
    `pdf <https://tel.archives-ouvertes.fr/tel-00440197/document>`__
.. [blatman2011] Blatman, G., and Sudret, B..
    *Adaptive sparse polynomial chaos expansion based on least angle regression.*
    Journal of Computational Physics 230 (2011) 2345–2367.
.. [borgonovo2017] Borgonovo, E. (2017).
    *Sensitivity analysis.*
    *An Introduction for the Management Scientist.* International Series in
    Operations Research and Management Science. Cham, Switzerland : Springer.
.. [burman1989] P. Burman. *Comparative study of Ordinary Cross-Validation,
    v-Fold Cross-Validation and the repeated Learning-Testing Methods.*
    Biometrika, 76(3):503–514, 1989.
.. [burnham2002] Burnham, K.P., and Anderson, D.R. *Model Selection and
    Multimodel Inference: A Practical Information Theoretic Approach*, Springer,
    2002.
.. [bingham2010] Bingham, N. H., & Fry, J. M. (2010).
    *Regression: Linear models in statistics*. Springer.
.. [Bjorck1996] Björck, Å. (1996). *Numerical methods for least squares problems.*
    Society for Industrial and Applied Mathematics.
.. [cambou2017] Mathieu Cambou, Marius Hofert, Christiane Lemieux, *Quasi-Random numbers for copula models*, Stat. Comp., 2017, 27(5), 1307-1329.
    `pdf <https://arxiv.org/pdf/1508.03483.pdf>`__
.. [caniou2012] Caniou, Y. *Global sensitivity analysis for nested and
    multiscale modelling.* PhD thesis. Blaise Pascal University-Clermont II,
    France, 2012.
    `pdf <https://tel.archives-ouvertes.fr/tel-00864175/document>`__
.. [ceres2012] Sameer Agarwal and Keir Mierle and Others, *Ceres Solver*,
    http://ceres-solver.org
.. [chacon2018] Chacón, J. E., & Duong, T. (2018).
    *Multivariate kernel smoothing and its applications.* CRC Press.
.. [charpentier2015] Charpentier, A., & Flachaire, E. (2014).
    *Log-Transform Kernel Density Estimation of Income Distribution* WP 2015-Nr 6,
    AMSE Aix Marseille School of Economics.
    `pdf <https://www.amse-aixmarseille.fr/sites/default/files/_dt/2012/wp_2015_-_nr_06.pdf>`__
.. [chihara1978] Chihara, T. S. (1978).
    *An introduction to orthogonal polynomials.* Dover publications.
.. [chapelle2002] Chapelle, O., Vapnik, V., & Bengio, Y. (2002).
    *Model selection for small sample regression.* Machine Learning, 48(1-3), 9.
.. [clouvel2025] Clouvel, L., Iooss, B., Chabridon, V., Il Idrissi, M. & Robin, F. (2025).
    *An overview of variance-based importance measures in the linear regression context: comparative analyses and numerical tests*,
    Socio-Environmental Systems Modeling, vol. 7, 18681, doi:10.18174/sesmo.18681
    `pdf <https://sesmo.org/article/view/18681/18319>`__
.. [cminpack2007] Devernay, F. *C/C++ Minpack*, 2007.
    http://devernay.free.fr/hacks/cminpack
.. [coles2001] Coles, S. G., *An Introduction to Statistical Modelling of Extreme Values*.
    Springer, 2001.
.. [crombecq2011] Crombecq, K., *Surrogate Modelling of Computer Experiments with Sequential Experimental Design*,
    PhD thesis, Universiteit Gent, Belgium, 2011.
    `pdf <https://backoffice.biblio.ugent.be/download/1970716/1971191>`__
.. [dagostino1986] D'Agostino, R.B. and Stephens, M.A. *Goodness-of-Fit Techniques*,
    Marcel Dekker, Inc., New York, 1986.
.. [dahlquist2008] Dahlquist, G. and Björck, A. *Numerical methods in scientific computing*,
   volume I. Society for Industrial and Applied Mathematics. 2008
.. [damblin2013] G. Damblin, M. Couplet and B. Iooss. *Numerical studies
    of space filling designs: optimization of Latin hypercube samples and
    subprojection properties.* Journal of Simulation, 7:276-289, 2013.
    `pdf <https://arxiv.org/pdf/1307.6835.pdf>`__
.. [david1981] David, H.A. (1981). *Order statistics.*, New-York:Wiley.
.. [daveiga2015] Da Veiga, S. (2015). *Global sensitivity analysis with dependence measures.*
    Journal of Statistical Computation and Simulation, 85(7), 1283-1305.
.. [daveiga2022] Da Veiga, S., Gamboa, F., Iooss, B., and Prieur, C. (2021).
    *Basics and trends in sensitivity analysis: theory and practice in R.*
    Society for Industrial and Applied Mathematics.
.. [davis1975] Davis, P.-J. and P.Rabinowitz, P. (1975). *Methods of numerical integration*,
    Academic Press.
.. [delmas2006] Delmas, J.F. and Jourdain, B. *Modèles aléatoires: Applications aux
    sciences de l'ingénieur et du vivant* , Berlin, Heidelberg: Springer Berlin Heidelberg (2006).
    *La maîtrise des incertitudes dans un contexte industriel.
    1re partie: une approche méthodologique globale basée sur des exemples.*
    Journal de la Société française de statistique, 147 (3), 33-71.
.. [deRocquigny2006] De Rocquigny, É. (2006).
    *La maîtrise des incertitudes dans un contexte industriel.
    1re partie: une approche méthodologique globale basée sur des exemples.*
    Journal de la Société française de statistique, 147 (3), 33-71.
.. [deRocquigny2012] De Rocquigny, E. (2012).
    *Modelling under risk and uncertainty.* John Wiley & Sons.
.. [deisenroth2020] Deisenroth, M. P., Faisal, A. A., and Ong, C. S. (2020).
    *Mathematics for machine learning.* Cambridge University Press.
.. [devroye1986] Devroye L, *Non-Uniform RandomVariate Generation*,
    Springer-Verlag, New York, 1986
    `pdf <http://luc.devroye.org/handbooksimulation1.pdf>`__
.. [devroye1986b] Devroye L, *Non-Uniform RandomVariate Generation - Errata*
.. [diebolt2008] Diebolt J., *Improving probability-weighted moment methods for the generalized extreme value distribution*,
    REVSTAT Statistical Journal, 2008.
    `pdf <https://www.ine.pt/revstat/pdf/rs080103.pdf>`__
.. [dimitriadis2016] Dimitriadis J., *On the Accuracy of Loader's Algorithm for
    the Binomial Density and Algorithms for Rectangle Probabilities for Markov
    Increments*, PhD thesis.
    Trier University, 2016.
    `pdf <https://ubt.opus.hbz-nrw.de/opus45-ubtr/frontdoor/deliver/index/docId/758/file/DissertationDimitriadis.pdf>`__
.. [dixon1983] Dixon, W.J., Massey, F.J, *Introduction to statistical analysis*
    4th ed., McGraw-Hill, 1983
.. [dlib2009] Davis E. King, *Dlib-ml: A Machine Learning Toolkit*,
    Journal of Machine Learning Research, 10:1755-1758, 2009.
.. [dobrolowski2014] Dobrolowski, E. and Kumar, P., *Some properties of the Marshall-Olkin and generalized Cuadras-Augé families of copulas*,
    The Australian Journal of Mathematical Analysis and Applications, 11(1), 1-13, 2014.
    `pdf <https://ajmaa.org/searchroot/files/pdf/v11n1/v11i1p2.pdf>`__
.. [doornik2005] Doornik, J.A. *An Improved Ziggurat Method to Generate Normal Random Samples*,
    mimeo, Nuffield College, University of Oxford, 2005.
    `pdf <https://www.doornik.com/research/ziggurat.pdf>`__
.. [dubourg2011] Dubourg, V. *Adaptative surrogate models for reliability and reliability-based design optimization*,
    University Blaise Pascal - Clermont II, 2011.
    `pdf <https://tel.archives-ouvertes.fr/tel-00697026v2/document>`__
.. [ernst2012] Ernst, O. G., Mugler, A., Starkloff, H. J., & Ullmann, E. (2012).
    *On the convergence of generalized polynomial chaos expansions.*
    ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339.
.. [fang2006] K-T. Fang, R. Li, and A. Sudjianto. *Design and modeling for
    computer experiments.* Chapman & Hall CRC, 2006.
.. [faraway2014] Faraway, J. J. (2014). *Linear models with R*. Second Edition CRC press.
.. [feller1970] Feller W.,
    *An Introduction to Probability Theory and Its Application*, John Wiley \& Sons,
    2nd edition, Vol. 2.
.. [fischer2017] Fischer, R. (2017). *Modelling the dependence of order
   statistics and nonparametric estimation*.
   `pdf <https://pastel.hal.science/tel-01526823/file/TH2016PESC1039.pdf>`__
.. [freedman1981] David Freedman, Persi Diaconis, *On the histogram as a density
    estimator: L2 theory*, December 1981, Probability Theory and Related Fields.
    57 (4): 453–476.
.. [gamboa2013] Gamboa, F., Janon, A., Klein, T. & Lagnoux, A. *Sensitivity
    analysis for multidimensional and functional outputs.* 2013.
    `pdf <https://arxiv.org/pdf/1311.1797.pdf>`__
.. [gamboa2022] Gamboa, F., Gremaud, P., Klein, T. & Lagnoux, A. *Global sensitivity analysis:
    A novel generation of mighty estimators based on rank statistics* Bernoulli 28(4): 2345-2374, 2022.
    `pdf <https://hal.science/hal-02474902v4/file/New_Look_Bernoulli_4.pdf>`__
.. [garnier2008] Garnier, J. *Quantile estimation* ECODOQUI 2008
.. [gautschi2004] Gautschi, W. (2004).
    *Orthogonal polynomials: computation and approximation.* OUP Oxford.
.. [genz2003] Genz A., Cools R., *An adaptive numerical cubature algorithm for simplices*,
    ACM Transactions on Mathematical Software 29(3):297-308, September 2003.
    `pdf <https://www.researchgate.net/publication/220492882_An_adaptive_numerical_cubature_algorithm_for_simplices>`__
.. [ghanem1991] Ghanem R. and P. Spanos, 1991,
    *Stochastic finite elements - A spectral approach*,
    Springer Verlag. (Reedited by Dover Publications, 2003).
.. [gerstner1998] Gerstner, T., & Griebel, M. (1998). *Numerical integration using
    sparse grids.* Numerical algorithms, 18 (3), 209-232.
    `pdf <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.3141&rep=rep1&type=pdf>`__
.. [girardin2018] Girardin, V., & Limnios, N. (2018).
    *Applied probability.* From Random Sequences to Stochastic Processes (Springer, Cham).
.. [gretton2005] Gretton, A., Bousquet, O., Smola, A., & Schölkopf, B. (2005, October).
    *Measuring statistical dependence with Hilbert-Schmidt norms.* In International conference on
    algorithmic learning theory (pp. 63-77). Springer, Berlin, Heidelberg.
.. [gobet2016] Gobet, E., 2016, *Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear*,
    Chapman \& Hall/CRC.
.. [ginsbourger2018] Ginsbouger, D., 2018 *Sequential Design of Computer Experiments*,
    Wiley StatsRef: Statistics Reference Online, Wiley
.. [hormann1993] Hormann W., *The generation of Binomial Random Variates* Journal
    of Statistical Computation and Simulation 46, pp. 101-110, 1993.
    `pdf <https://epub.wu.ac.at/1242/1/document.pdf>`__
.. [hahn2005] Thomas Hahn, *Cuba - a library for multidimensional numerical integration*
    Computer Physics Communications, 168(2), 78-95.
    `pdf <https://arxiv.org/pdf/hep-ph/0404043>`__
.. [halko2010] Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, *Finding
    structure with randomness: Probabilistic algorithms for constructing
    approximate matrix decompositions*,
    `pdf <https://arxiv.org/pdf/0909.4061.pdf>`__
.. [halko2011] Nathan Halko, Per-Gunnar Martisson, Yoel Shkolnisky and Mark Tygert,
    *An algorithm for the principal component analysis of large data sets*,
    `pdf <https://arxiv.org/pdf/1007.5510.pdf>`__
.. [hammersley1961] Hammersley, J. M., & Handscomb, D. C. (1961).
    *Monte Carlo Methods.* Chapman and Hall. Monographs on Statistics and Applied Probability.
.. [hastie2009] Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009).
    *The elements of statistical learning: data mining, inference, and prediction.*
    New York: springer.
.. [helton2003] Helton, J.C., and Davis, F. J.,
    *Latin Hypercube sampling and the propagation of uncertainty analyses of complex systems*,
    Reliability Engineering and System Safety 81, 23-69.
    `pdf <https://web.archive.org/web/20141222122431id_/http://www.stat.unm.edu:80/~storlie/st579/articles/RESS_2003_LHS.pdf>`__
.. [hotelling1933] Hotelling, H. (1933).
    *Analysis of a complex of statistical variables into principal components.*
    Journal of educational psychology, 24(6):417.
.. [iooss2015] Iooss B., Lemaître P. (2015) *A review on global sensitivity
    analysis methods.* In: Meloni C., Dellino G. (eds) Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, Springer.
    `pdf <https://arxiv.org/pdf/1404.2405>`__
.. [jackson1991] Jackson, J. E. (1991).
    *A user’s guide to principal components.*
    John Wiley & Sons.
.. [janon2014] Janon A., Klein T., Lagnoux-Renaudie A., Prieur C., *Asymptotic
    normality and efficiency of two Sobol index estimators*,
    ESAIM: Probability and Statistics, EDP Sciences, 2014, 18, pp.342-364.
    `pdf <https://hal.inria.fr/hal-00665048/document>`__
.. [jansen1999] Jansen, M.J.W. *Analysis of variance designs for model output*,
    Computer Physics Communication, 1999, 117, 35-43.
    `pdf <https://openturns.github.io/openturns/papers/jansen1999.pdf>`__
.. [jin2005] R. Jin, W. Chen, and A. Sudjianto. *An efficient algorithm for
    constructing optimal design of computer experiments.*
    Journal of Statistical Planning and Inference, 134 :268-287, 2005.
    `pdf <https://openturns.github.io/openturns/papers/jin2005.pdf>`__
.. [johnson1990] Johnson M, Moore L and Ylvisaker D (1990).
    *Minimax and maximin distance design.*
    Journal of Statistical Planning and Inference 26(2): 131-148.
.. [jolliffe2002] Jolliffe, I. T. (2002).
    *Principal component analysis.*
    Springer.
.. [jones1998] Donald R. Jones, Matthias Schonlau and William J Welch.
    *Global optimization of expensive black-box functions*,
    Journal of Global Optimization, 13(4), 455-492, 1998.
    `pdf <https://openturns.github.io/openturns/papers/jones1998.pdf>`__
.. [jones1993] M.C. Jones,
    *Simple boundary correction for kernel density estimation*,
    Statistics and Computing. Vol. 3, Issue 3, 1993, pp. 135-146,
    https://doi.org/10.1007/BF00147776
.. [kallenberg2021] Kallenberg, O.
    *Fundations of Modern Probability*,
    Springer, 3rd edition, 2021.
.. [Keutelian1991] Hovhannes Keutelian.
    *The Kolmogorov-Smirnov test when parameters are estimated from data*,
    30 April 1991, Fermilab.
.. [kiureghian1998] Kiureghian A., Dakessian T., *Multiple design points in first and second-order reliability*
    Structural Safety, Volume 20, Issue 1, 1998, Pages 37-49
    `pdf <https://openturns.github.io/openturns/papers/kiureghian1998.pdf>`__
.. [kleijnen1999] Kleijnen J. P. C., Helton J. C.,
    *Statistical analyses of scatterplots to identify factors in large-scale simulations, 1: Review and comparison of techniques.*
    Reliability Engineering and System Safety 65, 147-185
    `pdf <https://www.osti.gov/servlets/purl/5004>`__
.. [knight1966] Knight, W. R. *A Computer Method for Calculating Kendall's Tau
    with Ungrouped Data.* Journal of the American Statistical Association,
    1966, 61(314, Part 1), 436-439.
    `pdf <https://openturns.github.io/openturns/papers/knight1966.pdf>`__
.. [knio2006] Knio, O. M., & Le Maitre, O. P. (2006). *Uncertainty propagation in
    CFD using polynomial chaos decomposition.* Fluid dynamics research, *38* (9), 616.
.. [knio2010] Le Maître, O., & Knio, O. M. (2010). *Spectral methods for uncertainty
    quantification: with applications to computational fluid dynamics.* Springer
    Science & Business Media.
.. [ko1994] William L. Ko, Raymond H. Jackson,
    *Share Buckling Analysis of a Hat-Stiffend Panel*, NASA Technical Memorandum 4644 (November 1994).
.. [koay2006] Koay C.G., Basser P.J.,
    *Analytically exact correction scheme for signal extraction from noisy magnitude MR signals*,
    Journal of magnetics Resonance 179, 317-322, 2006.
.. [koehler1996] J.R. Koehler and A.B. Owen. *Computer experiments. In S. Ghosh
    and C.R. Rao, editors, Design and analysis of experiments,
    volume 13 of Handbook of statistics.* Elsevier, 1996.
.. [koutsourelakis2004] Koutsourelakis, H. Pradlwarter, G. Schueller,
    *Reliability of structures in high dimensions, part i: algorithms and applications*,
    Probabilistic Engineering Mechanics 19 (4) (2004) 409–417
.. [lebrun2009a] Lebrun, R. & Dutfoy, A. *An innovating analysis of the Nataf
    transformation from the copula viewpoint.* Prob. Eng. Mech., 2009, 24,
    312-320.
    `pdf <https://www.researchgate.net/profile/Regis_Lebrun/publication/245186106_An_innovating_analysis_of_the_Nataf_transformation_from_the_copula_viewpoint/links/5ab4ac1faca272171004264f/An-innovating-analysis-of-the-Nataf-transformation-from-the-copula-viewpoint.pdf>`__
.. [lebrun2009b] Lebrun, R. & Dutfoy, A. *A generalization of the Nataf
    transformation to distributions with elliptical copula.* Prob. Eng. Mech.,
    2009, 24, 172-178.
    `pdf <https://www.researchgate.net/profile/Regis_Lebrun/publication/229410827_A_generalization_of_the_Nataf_transformation_to_distribution_with_copula/links/59e47955458515393d60e7f1/A-generalization-of-the-Nataf-transformation-to-distribution-with-copula.pdf>`__
.. [lebrun2009c] Lebrun, R. & Dutfoy, A. *Do Rosenblatt and Nataf
    isoprobabilistic transformations really differ?* Prob. Eng. Mech., 2009,
    24, 577-584.
    `pdf <https://openturns.github.io/openturns/papers/lebrun2009c.pdf>`__
.. [legratiet2017] Le Gratiet, L., Marelli, S., & Sudret, B. (2017).
    *Metamodel-based sensitivity analysis: polynomial chaos expansions and
    Gaussian processes.* In Handbook of uncertainty quantification
    1289-1325. Springer, Cham.
.. [lecuyer2005] L’Ecuyer P., Lemieux C. (2005) Recent Advances in Randomized
    Quasi-Monte Carlo Methods. In: Dror M., L’Ecuyer P., Szidarovszky F. (eds)
    Modeling Uncertainty. International Series in Operations Research &
    Management Science, vol 46. Springer, Boston, MA
    `pdf <https://www.researchgate.net/profile/Pierre_LEcuyer/publication/226670289_Recent_Advances_in_Randomized_Quasi-Monte_Carlo_Methods/links/0deec52dd9d449512b000000/Recent-Advances-in-Randomized-Quasi-Monte-Carlo-Methods.pdf>`__
.. [lemaire2009] Lemaire M., *Structural reliability*, John Wiley & Sons, 2009.
.. [lemaitre2010] Le Maître, O., & Knio, O. M. (2010).
    *Spectral methods for uncertainty quantification: with applications to computational fluid dynamics*. Springer Science & Business Media.
.. [lemieux2009] Lemieux, C. (2009). *Monte Carlo and Quasi-Monte Carlo Sampling*.
    Springer. Springer Series in Statistics.
.. [leriche2021] Le Riche, R., & Picheny, V. (2021). *Revisiting Bayesian optimization in the
    light of the COCO benchmark.* Structural and Multidisciplinary
    Optimization, 64, 3063-3087.
.. [liu2006] Liu, R., & Owen, A. B. (2006). *Estimating mean dimensionality of
    analysis of variance decompositions.* Journal of the American Statistical
    Association, 101 (474), 712-721.
.. [Lilliefors1967] *On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown*
    Hubert W. Lilliefors
    Journal of the American Statistical Association,
    Vol. 62, No. 318. (Jun., 1967), pp. 399-402.
    `pdf <http://www.bios.unc.edu/~mhudgens/bios/662/2008fall/Backup/lilliefors1967.pdf>`__
.. [Limbourg2010] Limbourg, P., & De Rocquigny, E. (2010).
    *Uncertainty analysis using evidence theory–confronting level-1 and
    level-2 approaches with data availability and computational constraints.*
    Reliability Engineering & System Safety, 95(5), 550-564.
.. [loader2000] Loader C. *Fast and Accurate Computation of Binomial Probabilities*,
    `pdf <https://www.r-project.org/doc/reports/CLoader-dbinom-2002.pdf>`__
.. [luke] Luke Gustafson. The Spearman Rho null distribution. https://www.luke-g.com/math/spearman/index.html
.. [luo2018] Zhendong Luo, Goong Chen
    *Proper Orthogonal Decomposition Methods for Partial Differential Equations.*
    (2018) Academic Press.
.. [marelli2018] S. Marelli, B. Sudret, *An active-learning algorithm that combines sparse
    polynomial chaos expansions and bootstrap for structural reliability analysis*, Structural Safety, 2018.
    `pdf <https://arxiv.org/pdf/1709.01589.pdf>`__
.. [marrel2021] Marrel, A., & Chabridon, V. (2021). *Statistical developments for target and conditional sensitivity analysis:
    application on safety studies for nuclear reactor.* Reliability Engineering & System Safety, 107711.
.. [marsaglia1993] Marsaglia G. and Tsang W. W.  *A Simple Method for Generating Gamma*,
    Journal of Statistical Computational and Simulation, vol 46, pp101 - 110,1993.
    https://www.researchgate.net/publication/220492850_A_simple_method_for_generating_Gamma_Variables
.. [marsaglia2000] Marsaglia G. and Tsang W.W.
    *A simple method for generating gamma variables*,
    ACM Transactions  on Mathematical Software, Vol. 26, No. 3, September 2000, Pages
    363-372
    https://dl.acm.org/doi/10.1145/358407.358414
.. [martinez2011] Martinez, J-M., *Analyse de sensibilite globale par decomposition de la variance*,
    Presentation in the meeting of GdR Ondes and GdR MASCOT-NUM,
    January, 13th, 2011, Institut Henri Poincare, Paris, France
.. [matthys2003] G. Matthys & J. Beirlant,
    *Estimating the extreme value index and high quantiles with exponential regression models*,
    Statistica Sinica, 13, 850-880, 2003.
    `pdf <http://www3.stat.sinica.edu.tw/statistica/oldpdf/A13n316.pdf>`__
.. [mauricio1995] J. A. Mauricio,
    *Exact Maximum Likelihood Estimation of Stationary Vector ARMA Models*,
    Journal of the American Statistical Association 90, 282-291, 1995.
    `pdf <https://openturns.github.io/openturns/papers/mauricio1995.pdf>`__
.. [mckay1979] McKay M, Beckman R and Conover W (1979). *A comparison of three
    methods for selecting values of input variables in the analysis of output
    from a computer code.* Technometrics 21(2): 239-245.
    `pdf <https://www.asc.ohio-state.edu/statistics/comp_exp/jour.club/McKayConoverBeckman.pdf>`__
.. [meeker2017] Meeker, W. Q. Hahn, G. J., and Escobar, L.A. (2017).
    *Statistical intervals : a guide for practitioners and researchers*, John Wiley & Sons
.. [melchers1990] Melchers, R. E. (1990).
    *Radial importance sampling for structural reliability.* Journal of engineering mechanics, 116(1), 189-203.
.. [minka2012] Thomas P. Minka,
    *Estimating a Dirichlet distribution*, Microsoft Research report, 2000 (revised 2003, 2009, 2012).
    `pdf <http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf>`__
.. [morio2015] Morio J., Balesdent M., *Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems*,
    A Practical Approach, Elsevier, 2015.
.. [morris1995] D. Morris and J. Mitchell. *Exploratory designs for
    computational experiments.*
    Journal of Statistical Planning and Inference, 43 :381-402, 1995.
    `pdf <https://www.osti.gov/servlets/purl/10184343>`__
.. [morokoff1995] Morokoff, W. J., & Caflisch, R. E. (1995). *Quasi-Monte Carlo
    integration.* Journal of computational physics, 122(2), 218-230.
    `pdf <https://www.math.ucla.edu/~caflisch/Pubs/Pubs1995-1999/actaNumerica1998.pdf>`__
.. [muller2016] Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. " O'Reilly Media, Inc.".
.. [munoz2011] M. Munoz Zuniga, J. Garnier, E. Remy and E. de Rocquigny,
    *Adaptative Directional Stratification for controlled estimation of the
    probability of a rare event*, Reliability Engineering and System Safety,
    2011.
    `pdf <https://josselin-garnier.org/wp-content/uploads/2013/12/munoz_ress.pdf>`__
.. [nataf1962] Nataf, A. *Determination des distributions dont les marges sont
    donnees.* C. R. Acad. Sci. Paris, 1962, 225, 42-43.
    `pdf <https://openturns.github.io/openturns/papers/nataf1962.pdf>`__
.. [nash1999] Stephen G. Nash, 1999, *A survey of Truncated-Newton methods*,
    Systems Engineering and Operations Research Dept.,
    George Mason University, Fairfax, VA 22030.
    `pdf <https://core.ac.uk/download/pdf/82362441.pdf>`__
.. [johnson1995]  Johnson, N. L. and Kotz, S; and Balakrishnan, N., *Continuous univariate distributions volume 2*,
     second edition, 1995, Wiley Inter-Science.
.. [nelsen2006] Roger B. Nelsen, *An Introduction to Copulas 2nd Edition*,
    Springer, 2006.
.. [NikitinTchirina2007]  Ya. Yu. Nikitin and A.V.Tchirina.
    *Lilliefors Test for Exponentiality: Large Deviations,Asymptotic Efficiency, and Conditions of Local Optimality.*
    Mathematical Methods of Statistics 16.1 (2007): 16-24.
.. [nisthandbook] NIST/SEMATECH e-Handbook of Statistical Methods,
    http://www.itl.nist.gov/div898/handbook/
.. [nlopt2009] Steven G. Johnson, The NLopt nonlinear-optimization package,
    http://ab-initio.mit.edu/nlopt
.. [novak1999] Novak, E., & Ritter, K. (1999).
    Simple cubature formulas with high polynomial exactness.
    Constructive approximation, 15, 499-522.
.. [park1990] Byeong U. Park and J. S. Marron.
    *Comparison of data-driven bandwidth selectors.*
    Journal of the American Statistical Association, 85(409) :66–72, 1990.
.. [pearson1907] Pearson, K. (1901).
    *On lines and planes of closest fit to systems of points in space.*
    The London, Edinburgh, and Dublin philosophical magazine and journal of
    science, 2(11):559–572.
.. [pelamatti2020] Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E. G., & Guerin, Y. (2020).
    *Overview and comparison of gaussian process-based surrogate models for mixed continuous and discrete variables: Application on aerospace design problems.*
    High-Performance Simulation-Based Optimization, 189-224.
.. [peng2014] L. Peng, R. Wang, *Interval Estimation for Bivariate t-Copulas via Kendall's Tau*
    Casualty Actuarial Society, Volume 8/Issue 1, 2014.
    `pdf <https://sas.uwaterloo.ca/~wang/papers/2014PW(Variance).pdf>`__
.. [peter2019] Jacques Peter, Eric Savin, Itham Salah el Din.
    Generalized polynomial chaos and stochastic collocation methods
    for uncertainty quantification in aerodynamics.
    STO-AVT-326 Uncertainty Quantification in Computational Fluid Dynamics.
.. [petras2003] Petras, K. (2003). *Smolyak cubature of given polynomial
    degree with few nodes for increasing dimension.* Numerische Mathematik,
    93 (4), 729-753.
.. [pmfre01116] Dumas A., *Lois asymptotiques des estimateurs des indices de Sobol'*,
    Technical report, Phimeca, 2018.
    `pdf <https://openturns.github.io/openturns/papers/RT-PMFRE-01116-001C_-_Rapport_loi_estimateur_sobol.pdf>`__
.. [pronzato2012] Pronzato L and Muller W (2012).
    *Design of computer experiments: Space filling and beyond.*
    Statistics and Computing 22(3): 681-701.
    `pdf <https://hal.archives-ouvertes.fr/hal-00685876/document>`__
.. [raykar2006] Vikas Chandrakant Raykar, Ramani Duraiswami
    *Very Fast optimal bandwidth selection for univariate kernel density estimation.*
    CS-TR-4774. University of Maryland, College Park, MD 20783, 2006
.. [rawlings2001] Rawlings, J. O., Pantula, S. G., and Dickey, D. A.
    *Applied regression analysis: a research tool.*
    Springer Science and Business Media, 2001.
.. [robert2015] Robert, C. P.
    *The Metropolis-Hastings algorithm.*
    arXiv preprint arXiv:1504.01896, 2015.
    `pdf <https://arxiv.org/pdf/1504.01896.pdf>`__
.. [robertson2024] Robertson, G., Sjöstrand, H., Andersson, P., Göök, A. and Blair, P.
    *Addressing model inadequacy in fuel performance model calibration using MH-within-gibbs sampling.*
    Best Estimate Plus Uncertainty International Conference (BEPU 2024), Real Collegio, Lucca, Tuscany, Italy, May 19–24, 2024.
    Nuclear and Industrial Engineering (NINE)
    `pdf <https://www.diva-portal.org/smash/get/diva2:1865473/FULLTEXT01.pdf>`__
.. [rosenblatt1952] Rosenblatt, M. *Remarks on a multivariate transformation.*
    Ann. Math. Stat., 1952, 23, 470-472.
    `pdf <https://projecteuclid.org/download/pdf_1/euclid.aoms/1177729394>`__
.. [rota1964] Rota, G. C. (1964). *On the foundations of combinatorial theory I.*
    *Theory of Möbius functions.*.
    Z. Wahrseheinlichkeitstheorie, volume 2, pages 340-368.
.. [rubinstein2017] Rubinstein, R. Y., & Kroese, D. P. (2017). *Simulation and the Monte Carlo method.* John Wiley & Sons.
   `pdf <https://kgut.ac.ir/useruploads/1509987964985oqk.pdf>`__
.. [rudin1987] Rudin, W. *Real and complex analysis* 1987.
.. [saltelli1999] Saltelli, A., Tarantola, S. and Chan, K. *A quantitative, model
    independent method for global sensitivity analysis of model output.*
    Technometrics, 1999, 41(1), 39-56.
    `pdf <http://www.andreasaltelli.eu/file/repository/Saltelli_Technom.pdf>`__
.. [saltelli2000] Saltelli, A., Chan, K. and Scott, M. *Sensitivity analysis.*
    John Wiley and Sons publishers, Probability and statistics series, 2000.
    `pdf <http://www.andreasaltelli.eu/file/repository/Saltelli_Technom.pdf>`__
.. [saltelli2002] Saltelli, A. *Making best use of model evaluations to compute
    sensitivity indices.* Computer Physics Communication, 2002, 145, 580-297.
    `pdf <http://www.andreasaltelli.eu/file/repository/Making_best_use.pdf>`__
.. [sankararaman2012] Sankararaman, S. and Mahadevan, S. *Likelihood-based approach to multidisciplinary analysis under uncertainty.*
    Journal of Mechanical Design, 134(3):031008, 2012.
.. [santner2003] Santner, T. J., Williams, B. J., Notz, W. I., & Williams, B. J. (2003).
    *The design and analysis of computer experiments*. New York: Springer.
.. [saporta1990] Saporta, G. (1990). *Probabilités, Analyse de données et
    Statistique*, Technip
.. [scott1992] Scott, D. W. (1992). *Multivariate density estimation*,
    John Wiley & Sons, Inc.
.. [scott2015] Scott, D. W. (2015).
    *Multivariate density estimation: theory, practice, and visualization.*
    John Wiley & Sons.
.. [ScottStewart2011] W. F. Scott & B. Stewart.
    *Tables for the Lilliefors and Modified Cramer–von Mises Tests of Normality.*,
    Communications in Statistics - Theory and Methods. Volume 40, 2011 - Issue 4. Pages 726-730.
.. [segers2016] J. Segers &  M. Sibuya &  H. TsukaharaSen (2016). *The Empirical Beta Copula*,
   `pdf <https://arxiv.org/pdf/1607.04430>`__
.. [sen1990] Sen, A., & Srivastava, M. (1990). *Regression analysis: theory, methods, and applications*.
    Springer.
.. [shao1993] Shao, J. (1993). *Linear model selection by cross-validation.*
    Journal of the American statistical Association. 88 (422), 486-494.
.. [sheather1991] Sheather, S. J. and Jones, M. C. (1991).
    *A reliable data-based bandwidth selection method for kernel density estimation.*
    Journal of the Royal Statistical Society. Series B (Methodological),
    53(3) :683–690.
.. [simard2011] Simard, R. & L'Ecuyer, P. *Computing the Two-Sided Kolmogorov-
    Smirnov Distribution.* Journal of Statistical Software, 2011, 39(11), 1-18.
    `pdf <https://www.jstatsoft.org/article/view/v039i11/v39i11.pdf>`__
.. [silverman1982] B. W. Silverman
    *Algorithm AS 176: Kernel Density Estimation Using the Fast Fourier Transform.*
    Journal of the Royal Statistical Society. Series C (Applied Statistics),
    Vol. 31, No. 1 (1982), pp. 93-99 (7 pages)
.. [silverman1986] Silverman, B. W. (1986).
    *Density estimation.* (Chapman Hall, London).
.. [sobol1993] Sobol, I. M. *Sensitivity analysis for non-linear mathematical
    model* Math. Modelling Comput. Exp., 1993, 1, 407-414.
    `pdf <https://openturns.github.io/openturns/papers/sobol1993.pdf>`__
.. [sobol2007] Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S.S. and
    Mauntz, W.  *Estimating the approximation errors when fixing unessential
    factors in global sensitivity analysis*, Reliability Engineering and System
    Safety, 2007, 92, 957-960.
    `pdf <https://openturns.github.io/openturns/papers/sobol2007.pdf>`__
.. [soizeghanem2004] Soize, C., Ghanem, R. *Physical systems with random
    uncertainties: Chaos representations with arbitrary probability measure*,
    SIAM Journal on Scientific Computing, Society for Industrial and Applied
    Mathematics, 2004, 26 (2), 395-410.
    `pdf <https://hal.archives-ouvertes.fr/hal-00686211/document>`__
.. [sprent2001] Sprent, P., and Smeeton, N.C. *Applied Nonparametric
    Statistical Methods*, Third edition, Chapman & Hall, 2001.
.. [stadlober1990] Stadlober E., *The ratio of uniforms approach for generating
    discrete random variates*. Journal of Computational and Applied Mathematics,
    vol. 31, no. 1, pp. 181-189, 1990.
    `pdf <https://openturns.github.io/openturns/papers/stadlober1990.pdf>`__
.. [stein1987] Stein, M. (1987). *Large sample properties of simulations using Latin hypercube sampling.*
    Technometrics, 29(2), 143-151.
.. [stone1974] Stone, M. (1974). *Cross‐validatory choice and assessment of statistical predictions.*
    Journal of the royal statistical society: Series B (Methodological), 36 (2), 111-133.
.. [stoer1993] Stoer, J., Bulirsch, R. *Introduction to Numerical
    Analysis*, Second Edition, Springer-Verlag, 1993.
    `pdf <https://zhilin.math.ncsu.edu/TEACHING/MA580/Stoer_Bulirsch.pdf>`__
.. [sudret2006] Sudret, B. (2006). *Global sensitivity analysis using polynomial
    chaos expansions.* In. Proceedings of the 5th International Conference
    on Computational Stochastic Mechanics (CSM5), Rhodos (2006)
.. [sudret2008] Sudret, B. (2008). *Global sensitivity analysis using polynomial
    chaos expansions.* Reliability engineering & system safety, *93* (7), 964-979.
.. [sullivan2015] Sullivan, T. J. (2015). *Introduction to uncertainty quantification*, Vol. 63. Springer.
.. [vaart2000] Van der Vaart, A. W. (2000). *Asymptotic statistics*. Cambridge university press.
.. [suzuki2020] Suzuki, J. (2020). *Statistical Learning with Math and R*. Springer, Berlin.
.. [wand1994] Wand M.P, Jones M.C. *Kernel Smoothing*
    First Edition, Chapman & Hall, 1994.
.. [wang2012] Wang, Y. *Model selection.* (2012).
    In Handbook of computational statistics (pp. 469-497). Springer, Berlin, Heidelberg.
.. [wertz1999] Wertz, J. and Larson, W. *Space Mission Analysis and Design.*
    Microcosm, Inc. Torrance, CA.,1999.
.. [wilks1948] Wilks, S. S. (1948). Order statistics. Bulletin of the American Mathematical Society, 54(1) :6–50.
.. [robert2004] Robert C.P., Casella G. *Monte-Carlo Statistical Methods*, Springer, ISBN 0-387-21239-6, 2nd ed, 2004.
.. [witkovsky2003] Witkovsky V. *A Note on Computing Extreme Tail Probabilities of the Noncentral T Distribution with Large Noncentrality Parameter.*
    Computational Statistics & Data Analysis, 43 (2003) pp 249-267
.. [xiu2010] Xiu, D. (2010).
    *Numerical methods for stochastic computations: a spectral method approach.*
    Princeton university press.
.. [zaman2012] Zaman, K. *Modeling and management of epistemic uncertainty for multidisciplinary system analysis and design.*
    PhD thesis, Vanderbilt University, USA, 2012
.. [zhang2020] Zhang, Y., Tao, S., Chen, W., & Apley, D. W.  *A latent variable approach to Gaussian process modeling with qualitative and quantitative factors*
    Technometrics 62.3 (2020): 291-302.