File: plot_ackley_distribution.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (272 lines) | stat: -rw-r--r-- 10,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
Customize your Metropolis-Hastings algorithm
============================================

This simple example shows how you can build your own variant
of the Metropolis-Hastings algorithm.
"""

# %%
# We want to sample from the distribution with support :math:`[-3, 3]^2`
# whose PDF :math:`f` is proportional to the Ackley function to the tenth power:
#
# .. math::
#     \forall \vect{x} \in [-3, 3]^2 \quad f(\vect{x}) \propto a(\vect{x})^{10},
#
# where :math:`a` is the Ackey function defined in :ref:`use-case-ackley` page.
# In the following we call it the "Ackley distribution".

import openturns as ot
import openturns.viewer as otv
from openturns.usecases import ackley_function
from numpy import exp, format_float_scientific

ot.RandomGenerator.SetSeed(100)

# %%
# Prepare the Metropolis-Hastings algorithm
# -----------------------------------------
# Define the Ackley distribution support and density (up to a constant factor).

am = ackley_function.AckleyModel()
ackley = am.model
power10 = ot.SymbolicFunction("x", "x^10")
ackley_pdf = ot.ComposedFunction(power10, ackley)
logarithm = ot.SymbolicFunction("x", "10 * log(x)")
ackley_logpdf = ot.ComposedFunction(logarithm, ackley)
lb = -3.0
ub = 3.0
support = ot.Interval([lb] * 2, [ub] * 2)

# %%
# Define the proposal distribution as a :class:`~openturns.Histogram`.
# Its ticks (on the X axis of the PDF of the histogram) will remain the same,
# but its frequencies (on the Y axis) will be updated
# during the course of the Metropolis-Hastings algorithm.

n_bins = 50
myticks = ot.RegularGrid(lb, (ub - lb) / n_bins, n_bins + 1).getValues()
frequencies = [1.0] * (myticks.getSize() - 1)
proposal = ot.Histogram(myticks, frequencies)

# %%
# The state of the Markov chain must be converted to an acceptable set
# of parameters for the :class:`~openturns.Histogram` distribution.
# This is the job of the *link function*,
# which we construct with the :class:`~openturns.OpenTURNSPythonFunction` class.
# It takes a state as input and outputs the parameters (ticks and frequencies)
# of the proposal distribution.
# In our case, the ticks will not depend on the inputs,
# but the frequencies will be outputs of the Ackley function.

parameter_dim = proposal.getParameter().getSize()
parameter_desc = proposal.getParameterDescription()


class ConditionalAckley(ot.OpenTURNSPythonFunction):
    """
    When executed, this function returns the parameters of a Histogram
    which approximates the conditional Ackley distribution obtained
    when one of the 2 coordinates is fixed.
    To compute the frequencies of the Histogram,
    this OpenTURNSPythonFunction computes the values of the Ackley function
    on a regular grid on the line parallel to
    either the (1, 0) vector (if the second coordinate is fixed)
    or the (0, 1) vector (if the first coordinate is fixed)
    containing the point passed as input.
    The regular grid covers the part of this line which is contained in
    the support of the Ackley distribution, implicitly defined as the
    smallest square that contains the cartesian product of the regular grid
    with itself. For example, if the regular grid covers the interval [-3, 3],
    then the support is the square [-3, 3] x [-3, 3].

    Parameters
    ----------
    marginal : int
        The marginal whose value is *not* fixed.
        If 0, then the line of the regular grid is parallel to the (1, 0) vector.
        If 1, then the line of the regular grid is parallel to the (0, 1) vector.
    ticks : RegularGrid
        Ticks of the Histogram distribution.

    """

    def __init__(self, marginal, ticks):
        super().__init__(2, parameter_dim)
        self.setInputDescription(["X0", "X1"])  # input: X0 and X1 coordinates
        self.setOutputDescription(parameter_desc)  # output: parameters of the Histogram
        self._marginal = marginal  # parameter which does not vary after initialization
        offset = (ticks[1] - ticks[0]) / 2
        self._marginal_inputs = ot.Sample.BuildFromPoint(ticks)[0:-1] + offset
        # _marginal_inputs contains the varying coordinate of the points in the regular grid
        self._size = self._marginal_inputs.getSize()
        self._ticks = ticks

    def _exec(self, X):
        """
        Execute the function on a point X = (X0, X1).

        Parameters
        ----------
        X : list of 2 floats
            Point through which the line containing the regular grid passes.

        Returns
        -------
        parameters : :class:`~openturns.Point`
            Parameters of the :class:`~openturns.Histogram`.

        """
        inputs = ot.Sample(self._size, X)  # sample of inputs for the Ackley function
        # All input points are initialized at the point X passed as argument.

        # Replace the varying coordinate with the values of the regular grid.
        inputs[:, self._marginal] = self._marginal_inputs

        # Compute the Ackley function on these inputs.
        outputs = exp(ackley_logpdf(inputs).asPoint())

        # The outputs are the unnormalized frequencies of the Histogram
        # proposal distribution, but the Histogram.setParameter() method
        # expects a full set of parameters.
        # The easiest way to provide it is to construct a new Histogram object
        # with the adequate frequencies and call its getParameter() method.
        return ot.Histogram(self._ticks, outputs).getParameter()


# %%
# The 2 components of the state of the Markov chain will be updated
# one after the other, not simultaneously.
# We define 2 :class:`~openturns.UserDefinedMetropolisHastings` algorithms
# encapsulated within a :class:`~openturns.Gibbs` algorithm,
# so we need 2 link functions, each corresponding to one of the marginals
# of the Ackley distribution.
#
# Note that thanks to the :class:`~openturns.OpenTURNSPythonFunction` class,
# we were able to only code one template to be used by two different functions
# instead of directly coding two functions with the :class:`~openturns.PythonFunction` class.

link_function_0 = ot.Function(ConditionalAckley(0, myticks))
link_function_1 = ot.Function(ConditionalAckley(1, myticks))

# %%
# Let us illustrate the first of these functions.
# We can start by evaluating it at :math:`(0.5, 1.5)`.
# Let :math:`(X_0, X_1)` be a bidimensional random variable
# following the Ackley distribution.
# The output is the set of parameters for a :class:`~openturns.Histogram`
# distribution that approximates the distribution of :math:`X_0`
# conditional on :math:`X_1 = 1.5`.
# Let us update the Histogram we created before with this set of parameters.

par = link_function_0([0.5, 1.5])
proposal.setParameter(par)
print(par)

# %%
# The `link_function_0` function computes histogram frequencies proportional
# to the values of the unnormalized Ackley distribution PDF
# along the :math:`X_1 = 1.5` line.

title = "Ackley PDF (up to a constant factor) and $X_1 = 1.5$ cross-section"
graph = ot.Graph(title, "$X_0$", "$X_1$", True)
line = ot.Curve([[-3, 1.5], [3, 1.5]], "black", "dashed", 2)
graph.add(line)
contour = ackley_pdf.draw([lb] * 2, [ub] * 2).getDrawable(0).getImplementation()
contour.setLabels(
    [format_float_scientific(float(v), precision=1) for v in contour.getLabels()]
)
contour.setColorMapNorm("log")
graph.add(contour)
view = otv.View(graph)

# %%
# Let us compare the histogram to the unnormalized PDF
# (we still need to rescale it to make it appear properly on the graph).

scaling = ot.SymbolicFunction("x", "1.3e-10 * x")
scaled_ackley_pdf = ot.ComposedFunction(scaling, ackley_pdf)
graph = proposal.drawPDF()
graph.setXTitle("")
graph.add(scaled_ackley_pdf.draw(0, 0, [0.0, 1.5], -3.0, 3.0, 100))
graph.setTitle("Conditional distribution of $X_0$ given $X_1 = 1.5$")
_ = otv.View(graph)

# %%
# Let us now do the same think with `link_function_1`.
# This time, the relevant cross-section is along the line :math:`X_1 = 0.5`.

par = link_function_1([0.5, 1.5])
proposal.setParameter(par)
print(par)

title = "Ackley PDF (up to a constant factor) and $X_0 = 0.5$ cross-section"
graph = ot.Graph(title, "$X_0$", "$X_1$", True)
line = ot.Curve([[0.5, -3], [0.5, 3]], "black", "dashed", 2)
graph.add(line)
graph.setLegendPosition("upper right")
contour = ackley_pdf.draw([lb] * 2, [ub] * 2).getDrawable(0).getImplementation()
contour.setLabels(
    [format_float_scientific(float(v), precision=1) for v in contour.getLabels()]
)
contour.setColorMapNorm("log")
graph.add(contour)
view = otv.View(graph)

scaling = ot.SymbolicFunction("x", "3.1e-10 * x")
scaled_ackley_pdf = ot.ComposedFunction(scaling, ackley_pdf)
graph = proposal.drawPDF()
graph.setXTitle("")
graph.add(scaled_ackley_pdf.draw(1, 0, [0.5, 0.0], -3.0, 3.0, 100))
graph.setTitle("Conditional distribution of $X_1$ given $X_0 = 0.5$")
_ = otv.View(graph)


# %%
# We now choose the initial state of the Markov chain.

initialState = [0.1] * 2

# %%
# Sample from the Ackley distribution
# -----------------------------------
# We can finally define the two Metropolis-Hastings algorithms
# and the Gibbs algorithm which encapsulates them.

gmh_0 = ot.UserDefinedMetropolisHastings(
    ackley_logpdf, support, initialState, proposal, link_function_0, [0]
)
gmh_1 = ot.UserDefinedMetropolisHastings(
    ackley_logpdf, support, initialState, proposal, link_function_1, [1]
)
gibbs = ot.Gibbs([gmh_0, gmh_1])

sample = gibbs.getSample(100)

# %%
# Print the acceptance rates of the two Metropolis-Hastings samplers
mhlist = gibbs.getMetropolisHastingsCollection()
rate_gmh_0 = mhlist[0].getAcceptanceRate()
rate_gmh_1 = mhlist[1].getAcceptanceRate()

print("Acceptance rates: {} and {}".format(rate_gmh_0, rate_gmh_1))

# %%
# Draw the contour plot of the Ackley distribution PDF (up to a multiplicative constant)
# and the MCMC sample: we can see the sample is accurate.

title = "Ackley PDF (up to a constant factor) and Metropolis-Hastings sample"
graph = ot.Graph(title, "$X_0$", "$X_1$", True)
contour = ackley_pdf.draw([lb] * 2, [ub] * 2).getDrawable(0).getImplementation()
contour.setLabels(
    [format_float_scientific(float(v), precision=1) for v in contour.getLabels()]
)
print(contour.getLabels())
contour.setColorMapNorm("log")
graph.add(contour)
graph.add(ot.Cloud(sample, "black", "plus"))
view = otv.View(graph)

# %%
# Display all figures
otv.View.ShowAll()