1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
"""
Estimate a GPD on the daily rainfall data
=========================================
"""
# %%
# In this example, we illustrate various techniques of extreme value modeling applied
# to the daily rainfall accumulations in south-west England, over the period 1914-1962.
# Readers should refer to [coles2001]_ to get more details.
#
# We illustrate techniques to:
#
# - estimate a stationary and a non stationary GPD,
# - estimate a return level,
#
# using:
#
# - the log-likelihood function,
# - the profile log-likelihood function.
#
import openturns as ot
import openturns.viewer as otv
from openturns.usecases import coles
# %%
# First, we load the Rain dataset. We start by looking at it through time.
dataRain = coles.Coles().rain
print(dataRain[:10])
graph = ot.Graph(
"Daily rainfall accumulations SW England", "day", "level (mm)", True, ""
)
days = ot.Sample([[i] for i in range(len(dataRain))])
cloud = ot.Cloud(days, dataRain)
cloud.setColor("red")
cloud.setPointStyle(",")
graph.add(cloud)
graph.setIntegerXTick(True)
view = otv.View(graph)
# %%
# In order to select a threshold upon which the GPD model will be fitted, we draw
# the mean residual life plot with approximate :math:`95\%` confidence interval.
# It appears that the graph is linear from the threshold around
# :math:`u=30`. Then, it decays sharply although with a linear trend. We
# should be tempted to choose :math:`u=60` but there are only 6
# exceedances of the threshold :math:`u=60`. So it is not enough
# to make meaningful inferences. Moreover, the graph is not reliable
# for large values of :math:`u` due to the limited amount of data on
# which the estimate and the confidence interval are based.
# For all these reasons, it appears preferable to chose :math:`u=30`.
factory = ot.GeneralizedParetoFactory()
graph = factory.drawMeanResidualLife(dataRain)
view = otv.View(graph)
# %%
# To support that choice, we draw the parameter stability plots.
# We see that the perturbations appear small relatively to sampling errors.
# We can see that the change in pattern observed in the mean
# residual life plot is still apparent here for high thresholds.
# Hence, we choose the threshold :math:`u=30`.
u_range = ot.Interval(0.5, 50.0)
graph = factory.drawParameterThresholdStability(dataRain, u_range)
view = otv.View(graph, figure_kw={"figsize": (6.0, 6.0)})
# %%
# **Stationary GPD modeling via the log-likelihood function**
#
# We first assume that the dependence through time is negligible, so we first model the data as
# independent observations over the observation period.
#
# We consider the model :math:`\mathcal{M}_0` defined by:
#
# .. math::
# :nowrap:
#
# \begin{align*}
# \sigma(t) & = \sigma\\
# \xi(t) & = \xi
# \end{align*}
#
# We estimate the parameters of the GPD distribution by maximizing
# the log-likelihood of the data for the selecte threshold :math:`u=30`.
u = 30
result_LL = factory.buildMethodOfLikelihoodMaximizationEstimator(dataRain, u)
# %%
# We get the fitted GPD and its parameters of :math:`(\hat{\sigma}, \hat{\xi}, u)`.
fitted_GPD = result_LL.getDistribution()
desc = fitted_GPD.getParameterDescription()
param = fitted_GPD.getParameter()
print(", ".join([f"{p}: {value:.3f}" for p, value in zip(desc, param)]))
print("log-likelihood = ", result_LL.getLogLikelihood())
# %%
# We get the asymptotic distribution of the estimator :math:`(\hat{\mu}, \hat{\sigma}, \hat{\xi})`.
# In that case, the asymptotic distribution is normal.
parameterEstimate = result_LL.getParameterDistribution()
print("Asymptotic distribution of the estimator : ")
print(parameterEstimate)
# %%
# We get the covariance matrix and the standard deviation of :math:`(\hat{\sigma}, \hat{\xi}, \hat{\xi})`.
print("Cov matrix = \n", parameterEstimate.getCovariance())
print("Standard dev = ", parameterEstimate.getStandardDeviation())
# %%
# We get the marginal confidence intervals of order 0.95.
order = 0.95
for i in range(2): # exclude u parameter (fixed)
ci = parameterEstimate.getMarginal(i).computeBilateralConfidenceInterval(order)
print(desc[i] + ":", ci)
# %%
# At last, we can validate the inference result thanks to the 4 usual diagnostic plots:
#
# - the probability-probability pot,
# - the quantile-quantile pot,
# - the return level plot,
# - the data histogram and the density of the fitted model.
#
validation = ot.GeneralizedParetoValidation(result_LL, dataRain)
graph = validation.drawDiagnosticPlot()
view = otv.View(graph)
# %%
# **Stationary GPD modeling via the profile log-likelihood function**
#
# Now, we use the profile log-likehood function with respect
# to the :math:`\xi` parameter rather than log-likehood function
# to estimate the parameters of the GPD.
result_PLL = factory.buildMethodOfXiProfileLikelihoodEstimator(dataRain, u)
# %%
# The following graph allows one to get the profile log-likelihood plot.
# It also indicates the optimal value of :math:`\xi`, the maximum profile log-likelihood and
# the confidence interval for :math:`\xi` of order 0.95 (which is the default value).
order = 0.95
result_PLL.setConfidenceLevel(order)
view = otv.View(result_PLL.drawProfileLikelihoodFunction())
# %%
# We can get the numerical values of the confidence interval: it appears to be a bit smaller
# with the interval obtained from the profile log-likelihood function than with the log-likelihood
# function.
# Note that if the order requested is too high, the confidence interval might not be calculated because
# one of its bound is out of the definition domain of the log-likelihood function.
try:
print("Confidence interval for xi = ", result_PLL.getParameterConfidenceInterval())
except Exception as ex:
print(type(ex))
pass
# %%
# **Return level estimate from the estimated stationary GPD**
#
# We evaluate the :math:`T`-year return level which corresponds to the
# :math:`m`-observation return level, where :math:`m = T*n_y` with :math:`n_y`
# the number of observations per year. Here, we have daily observations, hence
# :math:`n_y = 365`. As we assumed that the observations were independent, the extremal index is :math:`\theta=1` which is the default value.
#
# The method also provides the asymptotic distribution of the estimator :math:`\hat{z}_m`.
ny = 365
T10 = 10
zm_10 = factory.buildReturnLevelEstimator(result_LL, dataRain, T10 * ny)
return_level_10 = zm_10.getMean()
print("Maximum log-likelihood function : ")
print(f"10-year return level = {return_level_10}")
return_level_ci10 = zm_10.computeBilateralConfidenceInterval(0.95)
print(f"CI = {return_level_ci10}")
T100 = 100
zm_100 = factory.buildReturnLevelEstimator(result_LL, dataRain, T100 * ny)
return_level_100 = zm_100.getMean()
print(f"100-year return level = {return_level_100}")
return_level_ci100 = zm_100.computeBilateralConfidenceInterval(0.95)
print(f"CI = {return_level_ci100}")
# %%
# **Return level estimate via the profile log-likelihood function of a stationary GPD**
#
# We can estimate the :math:`m`-observation return level :math:`z_m` directly from the data using the profile
# likelihood with respect to :math:`z_m`.
result_zm_100_PLL = factory.buildReturnLevelProfileLikelihoodEstimator(
dataRain, u, T100 * ny
)
zm_100_PLL = result_zm_100_PLL.getParameter()
print(f"100-year return level (profile) = {zm_100_PLL}")
# %%
# We can get the confidence interval of :math:`z_m`: once more, it appears to be a bit smaller
# than the interval obtained from the log-likelihood function.
result_zm_100_PLL.setConfidenceLevel(0.95)
return_level_ci100 = result_zm_100_PLL.getParameterConfidenceInterval()
print("Maximum profile log-likelihood function : ")
print(f"CI={return_level_ci100}")
# %%
# We can also plot the profile log-likelihood function and get the confidence interval, the optimal value
# of :math:`z_m` and its confidence interval.
view = otv.View(result_zm_100_PLL.drawProfileLikelihoodFunction())
# %%
# **Non stationary GPD modeling via the log-likelihood function**
#
# Now, we want to check whether it is necessary to model the time dependency over
# the observation period.
#
# We have to define the functional basis for each parameter of the GPD model. Even if we have
# the possibility to affect a time-varying model to each of the 2 parameters
# :math:`(\sigma, \xi)`,
# it is strongly recommended not to vary the shape parameter :math:`\xi`.
#
# We suppose that :math:`\sigma` is linear with time, and that the other parameters remain constant.
#
# For numerical reasons, it is strongly recommended to normalize all the data as follows:
#
# .. math::
#
# \tau(t) = \dfrac{t-c}{d}
#
# where:
#
# - the *CenterReduce* method where :math:`c = \dfrac{1}{n} \sum_{i=1}^n t_i` is the mean time stamps
# and :math:`d = \sqrt{\dfrac{1}{n} \sum_{i=1}^n (t_i-c)^2}` is the standard deviation of the time stamps;
# - the *MinMax* method where :math:`c = t_1` is the initial time and :math:`d = t_n-t_1` the final time. This method is the default one;
# - the *None* method where :math:`c = 0` and :math:`d = 1`: in that case, data are not normalized.
#
# We consider the model :math:`\mathcal{M}_1` defined by:
#
# .. math::
# :nowrap:
#
# \begin{align*}
# \sigma(t) & = \beta_1 + \beta_2\tau(t) \\
# \xi(t) & = \beta_3
# \end{align*}
#
constant = ot.SymbolicFunction(["t"], ["1.0"])
basis = ot.Basis([ot.SymbolicFunction(["t"], ["t"]), constant])
# basis for mu, sigma, xi
sigmaIndices = [0, 1] # linear
xiIndices = [1] # stationary
# %%
# We need to get the time stamps (in days here).
timeStamps = ot.Sample([[i + 1] for i in range(len(dataRain))])
# %%
# We can now estimate the list of coefficients :math:`\vect{\beta} = (\beta_1, \beta_2, \beta_3)` using
# the log-likelihood of the data.
result_NonStatLL = factory.buildTimeVarying(
dataRain, u, timeStamps, basis, sigmaIndices, xiIndices
)
beta = result_NonStatLL.getOptimalParameter()
print(f"beta = {beta}")
print(f"sigma(t) = {beta[1]:.4f} * tau(t) + {beta[0]:.4f}")
print(f"xi = {beta[2]:.4f}")
print(f"Max log-likelihood = {result_NonStatLL.getLogLikelihood()}")
# %%
# We get the asymptotic distribution of :math:`\vect{\beta}` to compute some confidence intervals of
# the estimates, for example of order :math:`p = 0.95`.
dist_beta = result_NonStatLL.getParameterDistribution()
confidence_level = 0.95
for i in range(beta.getSize()):
lower_bound = dist_beta.getMarginal(i).computeQuantile((1 - confidence_level) / 2)[
0
]
upper_bound = dist_beta.getMarginal(i).computeQuantile((1 + confidence_level) / 2)[
0
]
print(
"Conf interval for beta_"
+ str(i + 1)
+ " = ["
+ str(lower_bound)
+ "; "
+ str(upper_bound)
+ "]"
)
# %%
# You can get the expression of the normalizing function :math:`t \mapsto \tau(t)`:
normFunc = result_NonStatLL.getNormalizationFunction()
print("Function tau(t): ", normFunc)
print("c = ", normFunc.getEvaluation().getImplementation().getCenter()[0])
print("1/d = ", normFunc.getEvaluation().getImplementation().getLinear()[0, 0])
# %%
# You can get the function :math:`t \mapsto \vect{\theta}(t)` where
# :math:`\vect{\theta}(t) = (\sigma(t), \xi(t))`.
functionTheta = result_NonStatLL.getParameterFunction()
# %%
# In order to compare different modelings, we get the optimal log-likelihood of the data for both stationary
# and non stationary models. The difference seems to be non significant enough, which means that the non
# stationary model does not really improve the quality of the modeling.
print("Max log-likelihood: ")
print("Stationary model = ", result_LL.getLogLikelihood())
print("Non stationary linear sigma(t) model = ", result_NonStatLL.getLogLikelihood())
# %%
# In order to draw some diagnostic plots similar to those drawn in the stationary case, we refer to the
# following result: if :math:`Y_t` is a non stationary GPD model parametrized by :math:`(\sigma(t), \xi(t), u)`,
# then the standardized variables :math:`\hat{Y}_t` defined by:
#
# .. math::
#
# \hat{Y}_t = \dfrac{1}{\xi(t)} \log \left[1+ \xi(t)\left( \dfrac{Y_t-u}{\sigma(t)} \right)\right]
#
# have the Exponential distribution which is the GPD model with :math:`(\sigma, \xi, u) = (1, 0, 0)`.
#
# As a result, we can validate the inference result thanks the 4 usual diagnostic plots:
#
# - the probability-probability pot,
# - the quantile-quantile pot,
# - the return level plot,
# - the data histogram and the density of the fitted model.
#
# using the transformed data compared to the Exponential model. We can see that the adequation seems similar to the graph
# of the stationary model.
graph = result_NonStatLL.drawDiagnosticPlot()
view = otv.View(graph)
# %%
# We can draw the mean function :math:`t \mapsto \Expect{\mbox{GPD}(t)}`, defined for :math:`\xi <1` only:
#
# .. math::
# \Expect{\mbox{GPD}(t)} = u + \dfrac{\sigma(t)}{1 - \xi(t)}
#
# We can also draw the function :math:`t \mapsto q_p(t)` where :math:`q_p(t)` is the quantile of
# order :math:`p` of the GPD distribution at time :math:`t`.
# Here, :math:`\sigma(t)` is a linear function and the other parameters are constant, so the mean and the quantile
# functions are also linear functions.
graph = ot.Graph(
r"Maximum rain - Linear $\sigma(t)$",
"day",
"level (mm)",
True,
"",
)
graph.setIntegerXTick(True)
# data
cloud = ot.Cloud(timeStamps, dataRain)
cloud.setColor("red")
graph.add(cloud)
# mean function
meandata = [
result_NonStatLL.getDistribution(t).getMean()[0] for t in timeStamps.asPoint()
]
curve_meanPoints = ot.Curve(timeStamps.asPoint(), meandata)
graph.add(curve_meanPoints)
# quantile function
graphQuantile = result_NonStatLL.drawQuantileFunction(0.95)
drawQuant = graphQuantile.getDrawable(0)
drawQuant = graphQuantile.getDrawable(0)
drawQuant.setLineStyle("dashed")
graph.add(drawQuant)
graph.setLegends(["data", "mean function", "quantile 0.95 function"])
graph.setLegendPosition("lower right")
view = otv.View(graph)
# %%
# At last, we can test the validity of the stationary model :math:`\mathcal{M}_0`
# relative to the model with time varying parameters :math:`\mathcal{M}_1`. The
# model :math:`\mathcal{M}_0` is parametrized
# by :math:`(\beta_1, \beta_3)` and the model :math:`\mathcal{M}_1` is parametrized
# by :math:`(\beta_1, \beta_2, \beta_3)`: so we have :math:`\mathcal{M}_0 \subset \mathcal{M}_1`.
#
# We use the Likelihood Ratio test. The null hypothesis is the stationary model :math:`\mathcal{M}_0`.
# The Type I error :math:`\alpha` is taken equal to 0.05.
#
# This test confirms that there is no evidence of a linear trend for :math:`\mu`.
llh_LL = result_LL.getLogLikelihood()
llh_NonStatLL = result_NonStatLL.getLogLikelihood()
modelM0_Nb_param = 2
modelM1_Nb_param = 3
resultLikRatioTest = ot.HypothesisTest.LikelihoodRatioTest(
modelM0_Nb_param, llh_LL, modelM1_Nb_param, llh_NonStatLL, 0.05
)
accepted = resultLikRatioTest.getBinaryQualityMeasure()
print(
f"Hypothesis H0 (stationary model) vs H1 (linear mu(t) model): accepted ? = {accepted}"
)
# %%
# We detail the statistics of the Likelihood Ratio test: the deviance statistics
# :math:`\mathcal{D}_p` follows a :math:`\chi^2_1` distribution.
# The model :math:`\mathcal{M}_0` is rejected if the deviance statistics estimated on the data is greater than
# the threshold :math:`c_{\alpha}` or if the p-value is less than the Type I error :math:`\alpha = 0.05`.
print(f"Dp={resultLikRatioTest.getStatistic():.2f}")
print(f"alpha={resultLikRatioTest.getThreshold():.2f}")
print(f"p-value={resultLikRatioTest.getPValue():.2f}")
# %%
# We can test a linear trend in the log-scale parameter for :math:`\sigma(t)`:
#
# .. math::
# :nowrap:
#
# \begin{align*}
# \sigma(t) & = exp(\beta_1 + \beta_2\tau(t)) \\
# \xi(t) & = \beta_3
# \end{align*}
sigmaLink = ot.SymbolicFunction("x", "exp(x)")
result_NonStatLL_Link = factory.buildTimeVarying(
dataRain, u, timeStamps, basis, sigmaIndices, xiIndices, sigmaLink
)
beta = result_NonStatLL_Link.getOptimalParameter()
print(f"beta = {beta}")
print(f"sigma(t) = exp({beta[1]:.4f} * tau(t) + {beta[0]:.4f})")
print(f"xi = {beta[2]:.4f}")
print(f"Max log-likelihood = {result_NonStatLL.getLogLikelihood()}")
# %
# The maximized log-likelihood we obtain with the log-linear model is very similar
# to the one we obtained with the linear model. Hence, there is no evidence of a time trend.
# We draw the diagnostic plots which are similar to the previous ones.
graph = result_NonStatLL_Link.drawDiagnosticPlot()
view = otv.View(graph)
# %%
otv.View.ShowAll()
|