File: plot_estimate_normal.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (91 lines) | stat: -rw-r--r-- 2,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
Fit a parametric distribution
=============================
"""

# %%
# In this example we estimate the parameters of a distribution from a given sample.
# Once we are settled on a good candidate, we use the corresponding factory to fit
# the distribution. Each distribution factory has one or several estimators available.
# They are all derived from either the Maximum Likelihood method or from the method of moments (see :ref:`parametric_estimation`).
#

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# The Normal distribution
# -----------------------
#
# The parameters are estimated by the method of moments.
#

# %%
# We consider a sample, here created from a standard :class:`~openturns.Normal` distribution :
sample = ot.Normal().getSample(1000)

# %%
# We can estimate a Normal distribution with :class:`~openturns.NormalFactory` :
distribution = ot.NormalFactory().build(sample)

# %%
# We take a look at the estimated parameters with the `getParameter` method :
print(distribution.getParameter())

# %%
# We draw the fitted distribution
graph = distribution.drawPDF()
graph.setTitle("Fitted Normal distribution")
view = otv.View(graph)

# %%
# The Student distribution
# ------------------------
#
# The parameters of the Student law are estimated by a mixed method of moments and reduces MLE.
#

# %%
# We generate a sample from a :class:`~openturns.Student` distribution with parameters :math:`\nu=5.0`, :math:`\mu = -0.5` and a scale parameter :math:`\sigma=2.0`.
sample = ot.Student(5.0, -0.5, 2.0).getSample(1000)

# %%
# We use the factory to build an estimated distribution :
distribution = ot.StudentFactory().build(sample)

# %%
# We can obtain the estimated parameters with the `getParameter` method :
print(distribution.getParameter())


# %%
# Draw fitted distribution
graph = distribution.drawPDF()
graph.setTitle("Fitted Student distribution")
view = otv.View(graph)

# %%
# The Pareto distribution
# -----------------------
#
# By default the parameters of the :class:`~openturns.Pareto` distribution are estimated by least squares.
#

# %%
# We use a sample from a Pareto distribution with a scale parameter :math:`\beta=1.0`, a shape parameter :math:`\alpha > 1.0` and a location parameter :math:`\gamma = 0.0`.
sample = ot.Pareto(1.0, 1.0, 0.0).getSample(1000)

# %%
# Draw fitted distribution
distribution = ot.ParetoFactory().build(sample)

print(distribution.getParameter())

graph = distribution.drawPDF()
graph.setTitle("Fitted Pareto distribution")
view = otv.View(graph)

# %%
# Display all graphs
otv.View.ShowAll()