File: plot_draw_survival.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (256 lines) | stat: -rw-r--r-- 6,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
"""
Draw a survival function
========================
"""

# sphinx_gallery_thumbnail_number = 9
# %%
#
# Introduction
# ------------
#
# The goal of this example is to show how to draw the survival function of a
# sample or a distribution, in linear and logarithmic scales.
#
# Let :math:`X` be a random variable with distribution function :math:`F`:
#
# .. math::
#    F(x) = P(X\leq x)
#
#
# for any :math:`x\in\mathbb{R}`.
# The survival function :math:`S` is:
#
# .. math::
#    S(x) = P(X>x) = 1 - P(X\leq x) = 1 - F(x)
#
#
# for any :math:`x\in\mathbb{R}`.
#
# Let us assume that :math:`\{x_1,...,x_N\}` is a sample from :math:`F`.
#
# Let :math:`\hat{F}_N` be the empirical cumulative distribution function:
#
# .. math::
#    \hat{F}_N(x) = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{x_i\leq x}
#
#
# for any :math:`x\in\mathbb{R}`.
# Let :math:`\hat{S}_n` be the empirical survival function:
#
# .. math::
#    \hat{S}_N(x) = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{x_i>x}
#
#
# for any :math:`x\in\mathbb{R}`.
#
# Motivations for the survival function
# -------------------------------------
#
# For many probabilistic models associated with extreme events or lifetime models,
# the survival function has a simpler expression than the distribution function.
#
# * More specifically, several models (e.g., Pareto or Weibull) have a simple
#   expression when we consider the logarithm of the survival function.
#   In this situation, the :math:`(\log(x),\log(S(x)))` plot is often used.
#   For some distributions, this plot is a straight line.
#
# * When we consider probabilities very close to 1 (e.g., with extreme events),
#   a loss of precision can occur when we consider the :math:`1-F(x)` expression
#   with floating point numbers.
#   This loss of significant digits is known as "catastrophic cancellation" in
#   the bibliography and happens when two close floating point numbers are subtracted.
#   This is one of the reasons why we sometimes use directly the survival
#   function instead of the complementary of the distribution.

# %%
# Define a distribution
# ---------------------

# %%
import openturns as ot
import openturns.viewer as otv


# %%
sigma = 1.4
xi = 0.5
u = 0.1
distribution = ot.GeneralizedPareto(sigma, xi, u)

# %%
# Draw the survival of a distribution
# -----------------------------------

# %%
# The `computeCDF` and `computeSurvivalFunction` compute the CDF :math:`F` and survival :math:`S` of a distribution.

# %%
p1 = distribution.computeCDF(10.0)
p1

# %%
p2 = distribution.computeSurvivalFunction(10.0)
p2

# %%
p1 + p2

# %%
# The `drawCDF` and `drawSurvivalFunction` methods allow one to draw the functions :math:`F` and :math:`S`.

# %%
graph = distribution.drawCDF()
graph.setTitle("CDF of a distribution")
view = otv.View(graph)

# %%
graph = distribution.drawSurvivalFunction()
graph.setTitle("Survival function of a distribution")
view = otv.View(graph)

# %%
# In order to get finite bounds for the next graphics, we compute the `xmin`
# and `xmax` bounds from the 0.01 and 0.99 quantiles of the distributions.

# %%
xmin = distribution.computeQuantile(0.01)[0]
xmin

# %%
xmax = distribution.computeQuantile(0.99)[0]
xmax

# %%
# The `drawSurvivalFunction` method also has an option to plot the survival with the X axis in logarithmic scale.

# %%
npoints = 50
logScaleX = True
graph = distribution.drawSurvivalFunction(xmin, xmax, npoints, logScaleX)
graph.setTitle("Survival function of a distribution where X axis is in log scale")
view = otv.View(graph)
# graph

# %%
# In order to get both axes in logarithmic scale, we use the `LOGXY` option of the graph.

# %%
npoints = 50
logScaleX = True
graph = distribution.drawSurvivalFunction(xmin, xmax, npoints, logScaleX)
graph.setLogScale(ot.GraphImplementation.LOGXY)
graph.setTitle(
    "Survival function of a distribution where X and Y axes are in log scale"
)
view = otv.View(graph)
# graph

# %%
# Compute the survival of a sample
# --------------------------------

# %%
# We now generate a sample that we are going to analyze.

# %%
sample = distribution.getSample(1000)

# %%
sample.getMin(), sample.getMax()

# %%
# The `computeEmpiricalCDF` method of a `Sample` computes the empirical CDF.

# %%
p1 = sample.computeEmpiricalCDF([10])
p1

# %%
# Activating the second optional argument allows one to compute the empirical survival function.

# %%
p2 = sample.computeEmpiricalCDF([10], True)
p2

# %%
p1 + p2

# %%
# Draw the survival of a sample
# -----------------------------

# %%
# In order to draw the empirical functions of a `Sample`, we use the :class:`~openturns.UserDefined` class.
#
# * The `drawCDF` method plots the CDF.
# * The `drawSurvivalFunction` method plots the survival function.

# %%
userdefined = ot.UserDefined(sample)
graph = userdefined.drawCDF()
graph.setTitle("CDF of a sample")
view = otv.View(graph)
# graph

# %%
graph = userdefined.drawSurvivalFunction()
graph.setTitle("Empirical survival function of a sample")
view = otv.View(graph)
# graph

# %%
# As previously, the `drawSurvivalFunction` method of a distribution has an option to set the X axis in logarithmic scale.

# %%
xmin = sample.getMin()[0]
xmax = sample.getMax()[0]
pointNumber = sample.getSize()
logScaleX = True
graph = userdefined.drawSurvivalFunction(xmin, xmax, pointNumber, logScaleX)
graph.setTitle("Empirical survival function of a sample; X axis in log-scale")
view = otv.View(graph)
# graph

# %%
# We obviously have :math:`P(X>X_{max})=0`, where :math:`X_{max}` is the sample maximum.
# This prevents from using the sample maximum and have a logarithmic Y axis at the same time.
# This is why in the following example we restrict the interval where we draw the survival function.

# %%
xmin = sample.getMin()[0]
xmax = sample.getMax()[0] - 1  # To avoid log(0) because P(X>Xmax)=0
pointNumber = sample.getSize()
logScaleX = True
graph = userdefined.drawSurvivalFunction(xmin, xmax, pointNumber, logScaleX)
graph.setLogScale(ot.GraphImplementation.LOGXY)
graph.setTitle("Empirical survival function of a sample; X and Y axes in log-scale")
view = otv.View(graph)
# graph

# %%
# Compare the distribution and the sample with respect to the survival
# --------------------------------------------------------------------

# %%
# In the final example, we compare the distribution and sample survival function in the same graphics.

# %%
xmin = sample.getMin()[0]
xmax = sample.getMax()[0] - 1  # To avoid log(0) because P(X>Xmax)=0
npoints = 50
logScaleX = True
graph = userdefined.drawSurvivalFunction(xmin, xmax, pointNumber, logScaleX)
graph.setLogScale(ot.GraphImplementation.LOGXY)
graph.setLegends(["Sample"])
graphDistribution = distribution.drawSurvivalFunction(xmin, xmax, npoints, logScaleX)
graphDistribution.setLegends(["GPD"])
graph.add(graphDistribution)
graph.setLegendPosition("upper right")
graph.setTitle("GPD against the sample - n=%d" % (sample.getSize()))
view = otv.View(graph)


# %%
# Show all the graphs.
view.ShowAll()