1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
"""
Estimate moments from sample
============================
"""
# %%
# In this example we are going to estimate statistical moments from a sample, eventually from an output variable of interest.
# %%
import openturns as ot
# %%
# We first define the model, the input distribution and the output distribution.
# model f
model = ot.SymbolicFunction(["x1", "x2"], ["x1^2+x2", "x2^2+x1"])
# input vector X
inputDist = ot.JointDistribution([ot.Normal()] * 2, ot.IndependentCopula(2))
inputDist.setDescription(["X1", "X2"])
inputVector = ot.RandomVector(inputDist)
# output vector Y=f(X)
output = ot.CompositeRandomVector(model, inputVector)
# sample Y
size = 1000
sample = output.getSample(size)
# %%
# Estimate mean
sample.computeMean()
# %%
# Estimate standard deviation
sample.computeStandardDeviation()
# %%
# Estimate variance
sample.computeVariance()
# %%
# Estimate skewness
sample.computeSkewness()
# %%
# Estimate kurtosis
sample.computeKurtosis()
|