File: plot_visualize_empirical_cdf.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (41 lines) | stat: -rw-r--r-- 932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
Draw the empirical CDF
======================
"""

# %%
# In this example we are going to draw the empirical CDF of an unidimensional sample.

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# Then create a sample from a Gaussian distribution.

# %%
size = 100
normal = ot.Normal(1)
sample = normal.getSample(size)

# %%
# We draw the empirical CDF based on the :class:`~openturns.UserDefined` distribution.
# By default, the `drawCDF` method requires no input argument.

# %%
distribution = ot.UserDefined(sample)
graph = distribution.drawCDF()
view = otv.View(graph)

# %%
# If required, we can specify the interval that we want to draw.
# In the following example, these bounds are computed from the minimum and the maximum of the sample.

# %%
xmin = sample.getMin()[0] - 2.0
xmax = sample.getMax()[0] + 2.0
graph = ot.UserDefined(sample).drawCDF(xmin, xmax)
view = otv.View(graph)

# %%
otv.View.ShowAll()