1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
"""
Kolmogorov-Smirnov : get the statistics distribution
====================================================
"""
# %%
# %%
# In this example, we draw the Kolmogorov-Smirnov (KS) distribution for a sample size 10.
# We want to test the hypothesis that this sample has the `Uniform(0, 1)`
# distribution.
# The K.S. distribution is first plotted in the case where the
# parameters of the uniform distribution are known.
# Then we plot the distribution when the parameters of the uniform
# distribution are estimated from the sample.
#
# *Reference* : Hovhannes Keutelian, "The Kolmogorov-Smirnov test when
# parameters are estimated from data", 30 April 1991, Fermilab
#
# Note: There is a sign error in the paper; the equation:
# `D[i]=max(abs(S+step),D[i])` must be replaced with `D[i]=max(abs(S-step),D[i])`.
# %%
import openturns as ot
import openturns.viewer as otv
# %%
x = [0.9374, 0.7629, 0.4771, 0.5111, 0.8701, 0.0684, 0.7375, 0.5615, 0.2835, 0.2508]
sample = ot.Sample([[xi] for xi in x])
# %%
samplesize = sample.getSize()
samplesize
# %%
# Plot the empirical distribution function.
# %%
graph = ot.UserDefined(sample).drawCDF()
graph.setLegends(["Sample"])
curve = ot.Curve([0, 1], [0, 1])
curve.setLegend("Uniform")
graph.add(curve)
graph.setXTitle("X")
graph.setTitle("Cumulative distribution function")
view = otv.View(graph)
# %%
# The `computeKSStatisticsIndex` function computes the Kolmogorov-Smirnov
# distance between the sample and the distribution.
# The following function is for teaching purposes only: use `FittingTest`
# for real applications.
# %%
def computeKSStatistics(sample, distribution):
sample = sample.sort()
n = sample.getSize()
D = 0.0
D_previous = 0.0
for i in range(n):
F = distribution.computeCDF(sample[i])
Fminus = F - float(i) / n
Fplus = float(i + 1) / n - F
D = max(Fminus, Fplus, D)
if D > D_previous:
D_previous = D
return D
# %%
dist = ot.Uniform(0, 1)
dist
# %%
computeKSStatistics(sample, dist)
# %%
# The following function generates a sample of K.S. distances when the tested distribution is the `Uniform(0,1)` distribution.
# %%
def generateKSSampleKnownParameters(nrepeat, samplesize):
"""
nrepeat : Number of repetitions, size of the table
samplesize : the size of each sample to generate from the Uniform distribution
"""
dist = ot.Uniform(0, 1)
D = ot.Sample(nrepeat, 1)
for i in range(nrepeat):
sample = dist.getSample(samplesize)
D[i, 0] = computeKSStatistics(sample, dist)
return D
# %%
# Generate a sample of KS distances.
# %%
nrepeat = 10000 # Size of the KS distances sample
sampleD = generateKSSampleKnownParameters(nrepeat, samplesize)
# %%
# Compute exact Kolmogorov CDF.
# %%
def pKolmogorovPy(x):
y = ot.DistFunc.pKolmogorov(samplesize, x[0])
return [y]
# %%
pKolmogorov = ot.PythonFunction(1, 1, pKolmogorovPy)
# %%
def dKolmogorov(x, samplesize):
"""
Compute Kolmogorov PDF for given x.
x : an array, the points where the PDF must be evaluated
samplesize : the size of the sample
Reference
Numerical Derivatives in Scilab, Michael Baudin, May 2009
"""
n = x.getSize()
y = ot.Sample(n, 1)
for i in range(n):
y[i, 0] = pKolmogorov.gradient(x[i])[0, 0]
return y
# %%
def linearSample(xmin, xmax, npoints):
"""Returns a sample created from a regular grid
from xmin to xmax with npoints points."""
step = (xmax - xmin) / (npoints - 1)
rg = ot.RegularGrid(xmin, step, npoints)
vertices = rg.getVertices()
return vertices
# %%
n = 1000 # Number of points in the plot
s = linearSample(0.001, 0.999, n)
y = dKolmogorov(s, samplesize)
# %%
curve = ot.Curve(s, y)
curve.setLegend("Exact distribution")
graph = ot.HistogramFactory().build(sampleD).drawPDF()
graph.setLegends(["Empirical distribution"])
graph.add(curve)
graph.setTitle("Kolmogorov-Smirnov distribution (known parameters)")
graph.setXTitle("KS-Statistics")
view = otv.View(graph)
# %%
# Known parameters versus estimated parameters
# --------------------------------------------
# %%
# The following function generates a sample of K.S. distances when the tested
# distribution is the `Uniform(a,b)` distribution, where the `a` and `b`
# parameters are estimated from the sample.
# %%
def generateKSSampleEstimatedParameters(nrepeat, samplesize):
"""
nrepeat : Number of repetitions, size of the table
samplesize : the size of each sample to generate from the Uniform distribution
"""
distfactory = ot.UniformFactory()
refdist = ot.Uniform(0, 1)
D = ot.Sample(nrepeat, 1)
for i in range(nrepeat):
sample = refdist.getSample(samplesize)
trialdist = distfactory.build(sample)
D[i, 0] = computeKSStatistics(sample, trialdist)
return D
# %%
# Generate a sample of KS distances.
# %%
sampleDP = generateKSSampleEstimatedParameters(nrepeat, samplesize)
# %%
graph = ot.KernelSmoothing().build(sampleD).drawPDF()
graph.setLegends(["Known parameters"])
graphP = ot.KernelSmoothing().build(sampleDP).drawPDF()
graphP.setLegends(["Estimated parameters"])
graph.add(graphP)
graph.setTitle("Kolmogorov-Smirnov distribution")
graph.setXTitle("KS-Statistics")
view = otv.View(graph)
# %%
# Display the graphs
view.ShowAll()
# %%
# We see that the distribution of the KS distances when the parameters are
# estimated is shifted towards the left: smaller distances occur more often.
# This is a consequence of the fact that the estimated parameters tend to make
# the estimated distribution closer to the empirical sample.
|