1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
"""
Kolmogorov-Smirnov : understand the p-value
===========================================
"""
# %%
# In this example, we illustrate the calculation of the Kolmogorov-Smirnov (KS) p-value.
#
# * We generate a sample from a Gaussian distribution.
# * We create a uniform distribution with known parameters.
# * The Kolmogorov-Smirnov statistics is computed and plot on the empirical cumulative distribution function.
# * We plot the p-value as the area under the part of the curve exceeding the observed statistics.
# %%
import openturns as ot
import openturns.viewer as otv
# %%
# We generate a sample from a standard Gaussian distribution.
dist = ot.Normal()
samplesize = 10
sample = dist.getSample(samplesize)
# %%
testdistribution = ot.Normal()
result = ot.FittingTest.Kolmogorov(sample, testdistribution, 0.01)
# %%
pvalue = result.getPValue()
pvalue
# %%
KSstat = result.getStatistic()
KSstat
# %%
# Compute exact Kolmogorov PDF.
# %%
# Create a function which returns the CDF given the KS distance.
# %%
def pKolmogorovPy(x):
y = ot.DistFunc.pKolmogorov(samplesize, x[0])
return [y]
# %%
pKolmogorov = ot.PythonFunction(1, 1, pKolmogorovPy)
# %%
# Create a function which returns the KS PDF given the KS distance: use the `gradient` method.
# %%
def kolmogorovPDF(x):
return pKolmogorov.gradient(x)[0, 0]
# %%
def dKolmogorov(x):
"""
Compute Kolmogorov PDF for given x.
x : a Sample, the points where the PDF must be evaluated
Reference
Numerical Derivatives in Scilab, Michael Baudin, May 2009
"""
n = x.getSize()
y = ot.Sample(n, 1)
for i in range(n):
y[i, 0] = kolmogorovPDF(x[i])
return y
# %%
def linearSample(xmin, xmax, npoints):
"""Returns a sample created from a regular grid
from xmin to xmax with npoints points."""
step = (xmax - xmin) / (npoints - 1)
rg = ot.RegularGrid(xmin, step, npoints)
vertices = rg.getVertices()
return vertices
# %%
n = 1000 # Number of points in the plot
s = linearSample(0.001, 0.999, n)
y = dKolmogorov(s)
# %%
# Create a regular grid starting from the observed KS statistics.
# %%
nplot = 100
x = linearSample(KSstat, 0.6, nplot)
# %%
# Compute the bounds to fill: the lower vertical bound is 0 and the upper vertical bound is the KS PDF.
# %%
vLow = [0.0] * nplot
vUp = [pKolmogorov.gradient(x[i])[0, 0] for i in range(nplot)]
# %%
boundsPoly = ot.Polygon.FillBetween(x.asPoint(), vLow, vUp)
boundsPoly.setLegend("pvalue = %.4f" % (pvalue))
curve = ot.Curve(s, y)
curve.setLegend("Exact distribution")
curveStat = ot.Curve([KSstat, KSstat], [0.0, kolmogorovPDF([KSstat])])
curveStat.setColor("red")
curveStat.setLegend("KS-statistics = %.4f" % (KSstat))
graph = ot.Graph(
"Kolmogorov-Smirnov distribution (known parameters)",
"KS-Statistics",
"PDF",
True,
"upper right",
)
graph.setLegends(["Empirical distribution"])
graph.add(curve)
graph.add(curveStat)
graph.add(boundsPoly)
graph.setTitle("Kolmogorov-Smirnov distribution (known parameters)")
view = otv.View(graph)
# %%
# We observe that the p-value is the area of the curve which corresponds to
# the KS distances greater than the observed KS statistics.
# %%
otv.View.ShowAll()
|