1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
"""
Use the Kolmogorov/Lilliefors test
==================================
"""
# %%
# In this example we are going to perform a Kolmogorov or a Lilliefors goodness-of-fit test for a 1-d continuous distribution.
# %%
import openturns as ot
# %%
# Create the data.
# %%
distribution = ot.Normal()
sample = distribution.getSample(50)
# %%
# Case 1 : the distribution parameters are known.
# -----------------------------------------------
#
# In the case where the parameters of the distribution are known,
# we must use the `Kolmogorov` static method and the distribution to be tested.
# %%
result = ot.FittingTest.Kolmogorov(sample, distribution, 0.01)
print("Conclusion=", result.getBinaryQualityMeasure(), "P-value=", result.getPValue())
# %%
# Test succeeded ?
# %%
result.getBinaryQualityMeasure()
# %%
# P-Value associated to the risk
# %%
result.getPValue()
# %%
# Threshold associated to the test.
# %%
result.getThreshold()
# %%
# Observed value of the statistic.
# %%
result.getStatistic()
# %%
# Case 2 : the distribution parameters are estimated from the sample.
# -------------------------------------------------------------------
#
# In the case where the parameters of the distribution are estimated from the sample,
# we must use the `Lilliefors` static method and the distribution factory to be tested.
# %%
ot.ResourceMap.SetAsUnsignedInteger("FittingTest-LillieforsMaximumSamplingSize", 1000)
# %%
distributionFactory = ot.NormalFactory()
# %%
dist, result = ot.FittingTest.Lilliefors(sample, distributionFactory, 0.01)
print("Conclusion=", result.getBinaryQualityMeasure(), "P-value=", result.getPValue())
# %%
dist
# %%
# Test succeeded ?
# %%
result.getBinaryQualityMeasure()
# %%
# P-Value associated to the risk
# %%
result.getPValue()
# %%
# Threshold associated to the test.
# %%
result.getThreshold()
# %%
# Observed value of the statistic.
# %%
result.getStatistic()
|