File: plot_create_random_doe.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (53 lines) | stat: -rw-r--r-- 1,367 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
Create a random design of experiments
=====================================
"""

# %%
# Abstract
# --------
#
# Random designs of experiments can be generated from probability distributions.

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# We create the underlying distribution: a standard 2-dimensional normal distribution.
distribution = ot.Normal(2)
size = 50

# %%
# The Monte Carlo design of experiments
# -------------------------------------
#
# We build the experiment  with the :class:`~openturns.MonteCarloExperiment` class :
experiment = ot.MonteCarloExperiment(distribution, size)
sample = experiment.generate()

# %%
# We draw the design of experiments as a :class:`~openturns.Cloud`
graph = ot.Graph("Monte Carlo design", r"$x_1$", r"$x_2$", True, "")
cloud = ot.Cloud(sample, "blue", "fsquare", "")
graph.add(cloud)
view = otv.View(graph)

# %%
# Latin Hypercube Sampling
# ------------------------
#
# We build the LHS design of experiments with the :class:`~openturns.LHSExperiment` class :
experiment = ot.LHSExperiment(distribution, size)
sample = experiment.generate()

# %%
# We draw the LHS design of experiments as a cloud :
graph = ot.Graph("LHS design", r"$x_1$", r"$x_2$", True, "")
cloud = ot.Cloud(sample, "blue", "fsquare", "")
graph.add(cloud)
view = otv.View(graph)

# %%
# Display all figures
otv.View.ShowAll()