File: plot_function_manipulation.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (214 lines) | stat: -rw-r--r-- 5,350 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
Function manipulation
=====================
"""

# %%
#
# In this example we are going to exhibit some of the generic function services such as:
#
# - to ask the dimension of its input and output vectors
# - to evaluate itself, its gradient and hessian
# - to set a finite difference method for the evaluation of the gradient or the hessian
# - to evaluate the number of times the function or its gradient or its hessian have been evaluated
# - to disable or enable (enabled by default) the history mechanism
# - to disable or enable the cache mechanism
# - to get all the values evaluated by the function and the associated inputs with the methods
# - to clear the history
# - to ask the description of its input and output vectors
# - to extract output components
# - to get a graphical representation

# %%
import openturns as ot
import openturns.viewer as otv


# %%
# Create a vectorial function R ^n --> R^p
# for example R^2 --> R^2
f = ot.SymbolicFunction(["x1", "x2"], ["1+2*x1+x2", "2+x1+2*x2"])

# Create a scalar function R --> R
func1 = ot.SymbolicFunction(["x"], ["x^2"])

# Create another function R^2 --> R
func2 = ot.SymbolicFunction(["x", "y"], ["x*y"])

# Create a vectorial function R ^3 --> R^2
func3 = ot.SymbolicFunction(
    ["x1", "x2", "x3"], ["1+2*x1+x2+x3^3", "2+sin(x1+2*x2)-sin(x3) * x3^4"]
)

# Create a second vectorial function R ^n --> R^p
# for example R^2 --> R^2
g = ot.SymbolicFunction(["x1", "x2"], ["x1+x2", "x1^2+2*x2^2"])


def python_eval(X):
    a, b = X
    y = a + b
    return [y]


func4 = ot.PythonFunction(2, 1, python_eval)

# %%
# Ask for the dimension of the input and output vectors
print(f.getInputDimension())
print(f.getOutputDimension())

# %%
# Enable the history mechanism
f = ot.MemoizeFunction(f)

# %%
# Evaluate the function at a particular point
x = [1.0] * f.getInputDimension()
y = f(x)
print("x=", x, "y=", y)

# %%
# Get the history
samplex = f.getInputHistory()
sampley = f.getOutputHistory()
print("evaluation history = ", samplex, sampley)

# %%
# Clear the history mechanism
f.clearHistory()

# %%
# Disable the history mechanism
f.disableHistory()

# %%
# Enable the cache mechanism
f4 = ot.MemoizeFunction(func4)
f4.enableCache()
for i in range(10):
    f4(x)

# %%
# Get the number of times cached values are reused
f4.getCacheHits()

# %%
# Evaluate the gradient of the function at a particular point
gradientMatrix = f.gradient(x)
gradientMatrix

# %%
# Evaluate the hessian of the function at a particular point
hessianMatrix = f.hessian(x)
hessianMatrix

# %%
# Change the gradient method to a non centered finite difference method
step = [1e-7] * f.getInputDimension()
gradient = ot.NonCenteredFiniteDifferenceGradient(step, f.getEvaluation())
f.setGradient(gradient)
gradient

# %%
# Change the hessian method to a centered finite difference method
step = [1e-7] * f.getInputDimension()
hessian = ot.CenteredFiniteDifferenceHessian(step, f.getEvaluation())
f.setHessian(hessian)
hessian

# %%
# Get the number of times the function has been evaluated
f.getEvaluationCallsNumber()

# %%
# Get the number of times the gradient has been evaluated
f.getGradientCallsNumber()

# %%
# Get the number of times the hessian has been evaluated
f.getHessianCallsNumber()

# %%
# Get the component i
f.getMarginal(1)

# %%
# Compose two functions : h = f o g
ot.ComposedFunction(f, g)

# %%
# Get the valid symbolic constants
ot.SymbolicFunction.GetValidConstants()

# %%
# Graph 1 : z -->  f_2(x_0,y_0,z)
# for z in [-1.5, 1.5] and y_0 = 2. and z_0 = 2.5
# Specify the input component that varies
# Care : numerotation begins at 0
inputMarg = 2
# Give its variation intervall
zMin = -1.5
zMax = 1.5
# Give the coordinates of the fixed input components
centralPt = [1.0, 2.0, 2.5]
# Specify the output marginal function
# Care : numerotation begins at 0
outputMarg = 1
# Specify the point number of the final curve
ptNb = 101
# Draw the curve!
graph = func3.draw(inputMarg, outputMarg, centralPt, zMin, zMax, ptNb)
view = otv.View(graph)

# %%
# Graph 2 : (x,z) -->  f_1(x,y_0,z)
# for x in [-1.5, 1.5], z in [-2.5, 2.5]
# and y_0 = 2.5
# Specify the input components that vary
firstInputMarg = 0
secondInputMarg = 2
# Give their variation interval
inputMin2 = [-1.5, -2.5]
inputMax2 = [1.5, 2.5]
# Give the coordinates of the fixed input components
centralPt = [0.0, 2.0, 2.5]
# Specify the output marginal function
outputMarg = 1
# Specify the point number of the final curve
ptNb = [101, 101]
graph = func3.draw(
    firstInputMarg, secondInputMarg, outputMarg, centralPt, inputMin2, inputMax2, ptNb
)
view = otv.View(graph)

# %%
# Graph 3 : simplified method for x -->  func1(x)
# for x in [-1.5, 1.5]
# Give the variation interval
xMin3 = -1.5
xMax3 = 1.5
# Specify the point number of the final curve
ptNb = 101
# Draw the curve!
graph = func1.draw(xMin3, xMax3, ptNb)
view = otv.View(graph)

# %%
# Graph 4 : (x,y) -->  func2(x,y)
# for x in [-1.5, 1.5], y in [-2.5, 2.5]
# Give their variation interval
inputMin4 = [-1.5, -2.5]
inputMax4 = [1.5, 2.5]
# Give the coordinates of the fixed input components
centralPt = [0.0, 2.0, 2.5]
# Specify the output marginal function
outputMarg = 1
# Specify the point number of the final curve
ptNb = [101, 101]
graph = func2.draw(inputMin4, inputMax4, ptNb)
view = otv.View(graph)

# %%
# Display all figures
otv.View.ShowAll()