File: plot_symbolic_function.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (43 lines) | stat: -rw-r--r-- 943 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
Create a symbolic function
==========================
"""

# %%
# In this example we are going to create a function from mathematical formulas:
#
# .. math::
#    f(x_1, x_2) = -(6 + x_0^2 - x_1)
#
# Analytical expressions of the gradient and hessian are automatically computed except if the function is not differentiable everywhere. In that case a finite difference method is used.

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# create a symbolic function
function = ot.SymbolicFunction(["x0", "x1"], ["-(6 + x0^2 - x1)"])
print(function)

# %%
# evaluate function
x = [2.0, 3.0]
print("x=", x, "f(x)=", function(x))

# %%
# show gradient
print(function.getGradient())

# %%
# use gradient
print("x=", x, "df(x)=", function.gradient(x))

# %%
# draw isocontours of f around [2,3]
graph = function.draw(0, 1, 0, [2.0, 3.0], [1.5, 2.5], [2.5, 3.5])
view = otv.View(graph)

# %%
# Display all graphs
otv.View.ShowAll()