File: plot_kriging_vs_gpr.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (578 lines) | stat: -rw-r--r-- 20,184 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
"""
Gaussian Process Regression vs KrigingAlgorithm
================================================
"""

# %%
# The goal of this example is to highlight the main changes between the old API involving `KrigingAlgorithm` and the new one.
#
# It assumes a basic knowledge of Gaussian Process Regression.
# For that purpose, we create a Gaussian Process Regression surrogate model for a function which has scalar real inputs and outputs.
# We select a very simple example.

# %%
# Introduction
# ------------
#
# We consider the sine function:
#
# .. math::
#    y = x \sin(x)
#
#
# for any :math:`x\in[0,12]`.
#
# We want to create a surrogate of this function. This is why we create a sample of :math:`n` observations of the function:
#
# .. math::
#    y_i=x_i \sin(x_i)
#
# We are going to consider a Gaussian Process Regression with:
#
# * a constant trend,
# * a Matern covariance model.

# %%
import openturns as ot
import openturns.viewer as otv
import openturns.experimental as otexp


# %%
# First let us introduce some useful function.
# In order to observe the function and the location of the points in the input design of experiments, we define `plot_1d_data`.


# %%
def plot_1d_data(x_data, y_data, type="Curve", legend=None, color=None, linestyle=None):
    """Plot the data (x_data,y_data) as a Cloud/Curve"""
    if type == "Curve":
        graphF = ot.Curve(x_data, y_data)
    else:
        graphF = ot.Cloud(x_data, y_data)
    if legend is not None:
        graphF.setLegend(legend)
    if color is not None:
        graphF.setColor(color)
    if linestyle is not None:
        graphF.setLineStyle(linestyle)
    return graphF


def computeQuantileAlpha(alpha):
    """
    Compute bilateral confidence interval of level 1-alpha of a gaussian distribution.
    """
    bilateralCI = ot.Normal().computeBilateralConfidenceInterval(1 - alpha)
    return bilateralCI.getUpperBound()[0]


def computeBoundsConfidenceInterval(y_test_hat, quantileAlpha, conditionalSigma):
    """
    Compute the 1-alpha confidence interval bounds.
    """
    dataLower = [
        [y_test_hat[i, 0] - quantileAlpha * conditionalSigma[i, 0]]
        for i in range(n_test)
    ]
    dataUpper = [
        [y_test_hat[i, 0] + quantileAlpha * conditionalSigma[i, 0]]
        for i in range(n_test)
    ]
    dataLower = ot.Sample(dataLower)
    dataUpper = ot.Sample(dataUpper)
    return dataLower, dataUpper


# %%
g = ot.SymbolicFunction(["x"], ["x * sin(x)"])

# %%
xmin = 0.0
xmax = 12.0
n_train = 20
step = (xmax - 1 - xmin) / (n_train - 1.0)
x_train = ot.RegularGrid(xmin + 0.2, step, n_train).getVertices()
y_train = g(x_train)
n_train = x_train.getSize()

# %%
# In order to compare the function and its metamodel, we use a test (i.e. validation) design of experiments made of a regular grid of 100 points from 0 to 12.
# Then we convert this grid into a :class:`~openturns.Sample` and we compute the outputs of the function on this sample.

# %%
n_test = 100
step = (xmax - xmin) / (n_test - 1)
myRegularGrid = ot.RegularGrid(xmin, step, n_test)
x_test = myRegularGrid.getVertices()
y_test = g(x_test)

# %%
# We plot the true function (continuous dashed curve) and train data (cloud points) on the same figure.
graph = ot.Graph("Function of interest", "", "", True, "")
graph.add(
    plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed")
)
graph.add(
    plot_1d_data(x_train, y_train, type="Cloud", legend="Train points", color="red")
)
graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
view = otv.View(graph)

# %%
# We use the :class:`~openturns.ConstantBasisFactory` class to define the trend and the :class:`~openturns.MaternModel` class to define the covariance model.
# This Matérn model is based on the regularity parameter :math:`\nu=3/2`.

# %%
dimension = 1
basis = ot.ConstantBasisFactory(dimension).build()
covarianceModel = ot.MaternModel([1.0] * dimension, 1.5)

# %%
# In the following, we use the `KrigingAlgorithm` class to fit the Gaussian Process Regression model (aka Kriging).

# %%
kriging_algo = ot.KrigingAlgorithm(x_train, y_train, covarianceModel, basis)
kriging_algo.run()
kriging_result = kriging_algo.getResult()
krigingMM = kriging_result.getMetaModel()

# %%
# We observe that the `scale` and `amplitude` hyper-parameters have been optimized by the `run` method.
# The default optimization method (used here) is the :class:`~openturns.TNC`
# With the new API, the :class:`~openturns.experimental.GaussianProcessFitter` class  is used to fit the
# gaussian process and :class:`~openturns.experimental.GaussianProcessRegression` to get the conditioned model.

# %%
fitter_algo = otexp.GaussianProcessFitter(x_train, y_train, covarianceModel, basis)
fitter_algo.run()
fitter_result = fitter_algo.getResult()
gpr_algo = otexp.GaussianProcessRegression(fitter_result)
gpr_algo.run()
gpr_result = gpr_algo.getResult()
gprMetamodel = gpr_result.getMetaModel()

# %%
# We observe that the `scale` and `amplitude` hyper-parameters have been optimized by the :meth:`~openturns.experimental.GaussianProcessFitter.run` method.
# The default optimization method (used here) is the :class:`~openturns.Cobyla`, which is different from the old API.
# Then we get the metamodel with `getMetaModel` for evaluating the outputs of the metamodel on the test design of experiments.

# %%
# Now we plot Gaussian process Regression output, in addition to the previous plots

# %%
graph = ot.Graph("Comparison data vs GP models", "", "", True, "")
graph.add(plot_1d_data(x_test, y_test, legend="Exact", color="black"))
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(
    plot_1d_data(
        x_test, krigingMM(x_test), legend="Kriging", color="blue", linestyle="dashed"
    )
)
graph.add(
    plot_1d_data(
        x_test, gprMetamodel(x_test), legend="GPR", color="green", linestyle="dotdash"
    )
)
graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
view = otv.View(graph)

# %%
# We see that the Gaussian process regression estimated with both classes is interpolating.
# This is what is meant by *conditioning* a Gaussian process.
# We see that, when the sine function has a strong curvature between two points which are separated by a large distance (e.g. between :math:`x=4` and :math:`x=6`),
# then the Gaussian regression is not close to the function :math:`g`.
# However, when the training points are close (e.g. between :math:`x=11` and :math:`x=11.5`) or when the function is nearly linear
# (e.g. between :math:`x=8` and :math:`x=11`),
# then the gaussian process regression is quite accurate.

# %%
# Activating nugget factor
# ------------------------
# Both APIs allow one to estimate the model with an active nugget factor thanks to the :meth:`~openturns.CovarianceModel.activateNuggetFactor`,
# e.g. the parameter is estimated within the optimization process.
#

# %%
covarianceModel.activateNuggetFactor(True)
ot.RandomGenerator.SetSeed(1235)
epsilon = ot.Normal(0, 1.5).getSample(y_train.getSize())

# %%
kriging_algo_wnf = ot.KrigingAlgorithm(
    x_train, y_train + epsilon, covarianceModel, basis
)
kriging_algo_wnf.setOptimizationAlgorithm(ot.NLopt("GN_DIRECT"))
kriging_algo_wnf.run()
kriging_result_wnf = kriging_algo_wnf.getResult()
krigingMM_wnf = kriging_result_wnf.getMetaModel()
print(
    f"Nugget factor estimated with Kriging class = {kriging_result_wnf.getCovarianceModel().getNuggetFactor()}"
)

# %%
fitter_algo_wnf = otexp.GaussianProcessFitter(
    x_train, y_train + epsilon, covarianceModel, basis
)
fitter_algo_wnf.setOptimizationAlgorithm(ot.NLopt("GN_DIRECT"))
fitter_algo_wnf.run()
fitter_result_wnf = fitter_algo_wnf.getResult()
gpr_algo_wnf = otexp.GaussianProcessRegression(fitter_result_wnf)
gpr_algo_wnf.run()
gpr_result_wnf = gpr_algo_wnf.getResult()
gprMetamodel_wnf = gpr_result_wnf.getMetaModel()
print(
    f"Nugget factor estimated with GPR class = {gpr_result_wnf.getCovarianceModel().getNuggetFactor()}"
)

# %%
# We plot the test and train data
graph = ot.Graph("test and train with noisy data", "", "", True, "")
graph.add(plot_1d_data(x_test, y_test, legend="Exact", color="black"))
graph.add(
    plot_1d_data(
        x_train, y_train + epsilon, type="Cloud", legend="Noisy data", color="red"
    )
)
graph.add(
    plot_1d_data(
        x_test,
        krigingMM_wnf(x_test),
        legend="Kriging",
        color="blue",
        linestyle="dashed",
    )
)
graph.add(
    plot_1d_data(
        x_test,
        gprMetamodel_wnf(x_test),
        legend="GPR",
        color="green",
        linestyle="dotdash",
    )
)
graph.setAxes(True)
graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
view = otv.View(graph)

# %%
# Compute confidence bounds
# -------------------------

# %%
# In order to assess the quality of the surrogate model, we can estimate the variance and compute a 95% confidence interval
# associated with the conditioned Gaussian process.
# We begin by defining the `alpha` variable containing the complementary of the confidence level than we want to compute.
# Then we compute the quantile of the Gaussian distribution corresponding to `1-alpha/2`. Therefore, the confidence interval is:
#
# .. math::
#    P\in\left(X\in\left[q_{\alpha/2},q_{1-\alpha/2}\right]\right)=1-\alpha.
#
#

# %%
alpha = 0.05
quantileAlpha = computeQuantileAlpha(alpha)
print("alpha=%f" % (alpha))
print("Quantile alpha=%f" % (quantileAlpha))

# %%
# In order to compute the regression error, we can consider the conditional variance.
# Within the old API, the `KrigingResult.getConditionalMarginalVariance` method returns the marginal variance `marVar`
# evaluated at each points in the given sample.
# Then we can apply the sqrt function to get the standard deviation.
# Notice that some coefficients in the diagonal are very close to zero and
# nonpositive, which might lead to an exception when applying the sqrt function.
# This is why we add an epsilon on the diagonal, which prevents this issue.

# %%
sqrt = ot.SymbolicFunction(["x"], ["sqrt(x)"])
epsilon = ot.Sample(n_test, [1.0e-8])
conditional_variance_kriging = (
    kriging_result.getConditionalMarginalVariance(x_test) + epsilon
)
conditional_sigma_kriging = sqrt(conditional_variance_kriging)

# %%
# Within the new API, the :meth:`~openturns.experimental.GaussianProcessConditionalCovariance.getConditionalMarginalVariance` applies
# and returns the marginal variance `marVar`
# Since this is a variance, we use the square root in order to compute the
# standard deviation.
# Notice also that :meth:`~openturns.experimental.GaussianProcessConditionalCovariance.getConditionalCovariance` is similar to
# `KrigingResult.getConditionalCovariance`, and :meth:`~openturns.experimental.GaussianProcessConditionalCovariance.getDiagonalCovarianceCollection`
# has a "twin" method `KrigingResult.getConditionalMarginalCovariance`.,

# %%
gccc = otexp.GaussianProcessConditionalCovariance(gpr_result)
conditional_variance_gpr = gccc.getConditionalMarginalVariance(x_test)
conditional_sigma_gpr = sqrt(conditional_variance_gpr)

# %%
# Let us compute the same conditional standard deviation when accounting for the noise.

# %%
conditional_variance_kriging_wnf = (
    kriging_result_wnf.getConditionalMarginalVariance(x_test) + epsilon
)
conditional_sigma_kriging_wnf = sqrt(conditional_variance_kriging_wnf)

gccc_wnf = otexp.GaussianProcessConditionalCovariance(gpr_result_wnf)
conditional_variance_gpr_wnf = gccc_wnf.getConditionalMarginalVariance(x_test) + epsilon
conditional_sigma_gpr_wnf = sqrt(conditional_variance_gpr_wnf)

# %%
# The following figure presents the conditional standard deviation depending on :math:`x`.

# %%
graph = ot.Graph(
    "Conditional standard deviation", "x", "Conditional standard deviation", True, ""
)
curve = ot.Curve(x_test, conditional_sigma_kriging)
graph.add(curve)
curve = ot.Curve(x_test, conditional_sigma_gpr)
graph.add(curve)
graph.setColors(["blue", "red"])
graph.setLegends(["kriging", "GPR"])
graph.setLegendPosition("upper right")
view = otv.View(graph)

# %%
# Select the green colors using HSV values (for the confidence interval)
mycolors = [120, 1.0, 1.0]

# %%
# We are ready to display all the previous information and the three confidence intervals we want.
# First let us evaluate the different confidence bounds

# %%
ci_lower_bound_km, ci_upper_bound_km = computeBoundsConfidenceInterval(
    krigingMM(x_test), quantileAlpha, conditional_sigma_kriging
)
ci_lower_bound_km_noise, ci_upper_bound_km_noise = computeBoundsConfidenceInterval(
    krigingMM_wnf(x_test), quantileAlpha, conditional_sigma_kriging_wnf
)
ci_lower_bound_gpr, ci_upper_bound_gpr = computeBoundsConfidenceInterval(
    gprMetamodel(x_test), quantileAlpha, conditional_sigma_gpr
)
ci_lower_bound_gpr_noise, ci_upper_bound_gpr_noise = computeBoundsConfidenceInterval(
    gprMetamodel_wnf(x_test), quantileAlpha, conditional_sigma_gpr_wnf
)

# %%
# Now we loop over the different models

# %%
grid_layout = ot.GridLayout(2, 2)
grid_layout.setTitle("Confidence interval with various models")
graph = ot.Graph("Kriging API", "x", "y", True, "")
boundsPoly = ot.Polygon.FillBetween(x_test, ci_lower_bound_km, ci_upper_bound_km)
boundsPoly.setColor(ot.Drawable.ConvertFromHSV(mycolors[0], mycolors[1], mycolors[2]))
boundsPoly.setLegend(" %d%% bounds" % ((1.0 - alpha) * 100))
graph.add(boundsPoly)
graph.add(
    plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed")
)
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(plot_1d_data(x_test, krigingMM(x_test), legend="Kriging", color="blue"))

graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
grid_layout.setGraph(0, 0, graph)

# %%
# Gaussian Process Regression

# %%
graph = ot.Graph("GPR API", "x", "y", True, "")
boundsPoly = ot.Polygon.FillBetween(x_test, ci_lower_bound_gpr, ci_upper_bound_gpr)
boundsPoly.setColor(ot.Drawable.ConvertFromHSV(mycolors[0], mycolors[1], mycolors[2]))
boundsPoly.setLegend(" %d%% bounds" % ((1.0 - alpha) * 100))
graph.add(boundsPoly)
graph.add(
    plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed")
)
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(plot_1d_data(x_test, gprMetamodel(x_test), legend="GPR", color="blue"))

graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
grid_layout.setGraph(0, 1, graph)

# %%
# Kriging with noise (old API)

# %%
graph = ot.Graph("Kriging API", "x", "y", True, "")
boundsPoly = ot.Polygon.FillBetween(
    x_test, ci_lower_bound_km_noise, ci_upper_bound_km_noise
)
boundsPoly.setColor(ot.Drawable.ConvertFromHSV(mycolors[0], mycolors[1], mycolors[2]))
boundsPoly.setLegend(" %d%% bounds" % ((1.0 - alpha) * 100))
graph.add(boundsPoly)
graph.add(plot_1d_data(x_test, y_test, legend="Exact", color="black"))
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(
    plot_1d_data(
        x_test,
        krigingMM_wnf(x_test),
        legend="Kriging + noise",
        color="blue",
        linestyle="dashed",
    )
)

graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
grid_layout.setGraph(1, 0, graph)

# %%
# Gaussian Process Regression with noise

# %%
graph = ot.Graph("GPR API", "x", "y", True, "")
boundsPoly = ot.Polygon.FillBetween(
    x_test, ci_lower_bound_gpr_noise, ci_upper_bound_gpr_noise
)
boundsPoly.setColor(ot.Drawable.ConvertFromHSV(mycolors[0], mycolors[1], mycolors[2]))
boundsPoly.setLegend(" %d%% bounds" % ((1.0 - alpha) * 100))
graph.add(boundsPoly)
graph.add(
    plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed")
)
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(
    plot_1d_data(x_test, gprMetamodel_wnf(x_test), legend="GPR + noise", color="blue")
)

graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
grid_layout.setGraph(1, 1, graph)

view = otv.View(grid_layout)

# %%
# We see that the confidence intervals are small in the regions where two
# consecutive training points are close to each other.
# With noisy data, the confidence interval become bigger.

# %%
# Gaussian Process Regression with fixed trend
# --------------------------------------------

# %%
# The new Gaussian Process Regression allows one to estimate a conditioned Gaussian process regression
# if covariance models are fixed and with a given trend function. Here after how it applies for our use-case.
# First we set the known parameters (covariance, trend)

# %%
scale = [4.51669]
amplitude = [8.648]
covariance_opt = ot.MaternModel(scale, amplitude, 1.5)
trend_function = ot.SymbolicFunction("x", "-3.1710410094572903")

# %%
# Then we define the Gaussian Process Regression relying on these parameters:

# %%
gpr_algo_noopt = otexp.GaussianProcessRegression(
    x_train, y_train, covariance_opt, trend_function
)
gpr_algo_noopt.run()
gpr_result_no_opt = gpr_algo_noopt.getResult()
gpr_nopt_Metamodel = gpr_result_no_opt.getMetaModel()

# %%
# Plot the function

# %%
graph = ot.Graph("GPR with known trend", "", "", True, "")
graph.add(
    plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed")
)
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(plot_1d_data(x_test, gpr_nopt_Metamodel(x_test), legend="GPR", color="green"))
graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
view = otv.View(graph)

# %%
# The given GPR matches with the data as expected !

# %%
# Gaussian Process Regression with heteroscedastic noise
# ------------------------------------------------------

# %%
# The objective is to estimate a Gaussian process regression accounting for a noise (known noise).
# Unfortunately the feature is unavailable with the new API. The objective is to have it in the next releases
# using different ways.
# The only workaround until now is to rely on the old API. Here an example of how using such a feature.

# %%
noise = ot.Uniform(0, 0.5).getSample(y_train.getSize())
kriging_algo_hsn = ot.KrigingAlgorithm(x_train, y_train, covarianceModel, basis)
kriging_algo_hsn.setNoise(noise.asPoint())
kriging_algo_hsn.run()
kriging_result_hsn = kriging_algo_hsn.getResult()
krigingMM_hsn = kriging_result_hsn.getMetaModel()

# %%
# Plot the result

# %%
graph = ot.Graph("Kriging with known noise", "", "", True, "")
graph.add(
    plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed")
)
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(
    plot_1d_data(x_test, krigingMM_hsn(x_test), legend="Kriging+noise", color="green")
)
graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
view = otv.View(graph)

# %%
# The result is slightly different from the previous ones. We take into account that each output `y_train` is potentially "random".

# %%
# -------------------
# Summary of features
# -------------------

# %%
# We illustrated some the features of both old/new API, making a comparison in terms of usage and result.
# We can summarize the main differences hereafter (old API / new API):
#
# * Default optimization solver : :class:`~openturns.TNC`/:class:`~openturns.Cobyla`
# * Conditional covariance : `KrigingResult.getConditionalCovariance`/ :meth:`~openturns.experimental.GaussianProcessConditionalCovariance.getConditionalCovariance`
# * Known trend : no / yes (see : :class:`~openturns.experimental.GaussianProcessRegression` )
# * Nugget factor : yes / yes
# * Heteroscedastic noise : `KrigingAlgorithm.setNoise` / no
# * Fit the model : `KrigingAlgorithm.run` / :meth:`~openturns.experimental.GaussianProcessFitter.run` + :meth:`~openturns.experimental.GaussianProcessRegression.run`

# %%
# Display all figures
otv.View.ShowAll()