1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
"""
A quick start guide to graphs
==============================
"""
# sphinx_gallery_thumbnail_number = 4
# %%
#
# In this example, we show how to create graphs. We show how to create and configure its axes and its colors. We show how to create a plot based on the combination of several plots.
# %%
# The `draw` method the `Graph` class
# -----------------------------------
#
# The simplest way to create a graph is to use the `draw` method. The :class:`~openturns.Normal` distribution for example provides a method to draw its density function.
# %%
import openturns as ot
import openturns.viewer as otv
import matplotlib.pyplot as plt
# %%
n = ot.Normal()
n
# %%
graph = n.drawPDF()
view = otv.View(graph)
# %%
# To configure the look of the plot, we can first observe the type of graph returned by the `drawPDF` method returns: it is a :class:`~openturns.Graph`.
# %%
graph = n.drawPDF()
type(graph)
# %%
# The class:`~openturns.Graph` class provides several methods to configure the legends, the title and the colors.
# Since a graph can contain several sub-graphs, the `setColors` method takes a list of colors as inputs argument: each item of the list corresponds to the sub-graphs.
# %%
graph.setXTitle("N")
graph.setYTitle("PDF")
graph.setTitle("Probability density function of the standard Gaussian distribution")
graph.setLegends(["N"])
graph.setColors(["blue"])
view = otv.View(graph)
# %%
# Combine several graphs
# ----------------------
#
# In order to combine several graphs, we can use the `add` method.
# %%
# Let us create an empirical histogram from a sample.
# %%
sample = n.getSample(100)
# %%
histo = ot.HistogramFactory().build(sample).drawPDF()
view = otv.View(histo)
# %%
# Then we add the histogram to the `graph` with the `add` method. The `graph` then contains two plots.
# %%
graph.add(histo)
view = otv.View(graph)
# %%
# Draw a cloud
# ------------
#
# The :class:`~openturns.Cloud` class creates clouds of bidimensional points. To illustrate it, let us create two Normal distributions in two dimensions.
# %%
# Create a Funky distribution
corr = ot.CorrelationMatrix(2)
corr[0, 1] = 0.2
copula = ot.NormalCopula(corr)
x1 = ot.Normal(-1.0, 1)
x2 = ot.Normal(2, 1)
x_funk = ot.JointDistribution([x1, x2], copula)
# %%
# Create a Punk distribution
x1 = ot.Normal(1.0, 1)
x2 = ot.Normal(-2, 1)
x_punk = ot.JointDistribution([x1, x2], copula)
# %%
# Let us mix these two distributions.
# %%
mixture = ot.Mixture([x_funk, x_punk], [0.5, 1.0])
# %%
n = 500
sample = mixture.getSample(n)
# %%
graph = ot.Graph("n=%d" % (n), "X1", "X2", True, "")
cloud = ot.Cloud(sample)
graph.add(cloud)
view = otv.View(graph)
# %%
# We sometimes want to customize the graph by choosing the type of point (square, triangle, circle, etc.), of line (continuous, dashed, etc.) or another parameter.
# We can know the list of possible values with the corresponding `getValid` method.
#
# For example, the following function returns the possible values of the `PointStyle` parameter.
# %%
ot.Drawable.GetValidPointStyles()
# %%
# The following method returns the list of colors.
# %%
ot.Drawable.GetValidColors()[0:10]
# %%
# In the following graph, we use the "aquamarine1" color with "fcircle" circles.
# %%
graph = ot.Graph("n=%d" % (n), "X1", "X2", True, "")
cloud = ot.Cloud(sample)
cloud.setColor("aquamarine1")
cloud.setPointStyle("fcircle")
graph.add(cloud)
view = otv.View(graph)
# %%
# Configure the style of points and the thickness of a curve
# ----------------------------------------------------------
#
# Assume that we want to plot the `sine` curve from -2 to 2. The simplest way is to use the `draw` method of the function.
# %%
g = ot.SymbolicFunction("x", "sin(x)")
# %%
graph = g.draw(-2, 2)
view = otv.View(graph)
# %%
# One would rather get a dashed curve: let us search for the available line styles.
# %%
ot.Drawable.GetValidLineStyles()
# %%
# In order to use the :class:`~openturns.Curve` class, it will be easier if we have a method to generate a :class:`~openturns.Sample` containing points regularly spaced in an interval.
# %%
def linearSample(xmin, xmax, npoints):
"""Returns a sample created from a regular grid
from xmin to xmax with npoints points."""
step = (xmax - xmin) / (npoints - 1)
rg = ot.RegularGrid(xmin, step, npoints)
vertices = rg.getVertices()
return vertices
# %%
x = linearSample(-2, 2, 50)
y = g(x)
# %%
graph = ot.Graph("Sinus", "x", "sin(x)", True)
curve = ot.Curve(x, y)
curve.setLineStyle("dashed")
curve.setLineWidth(4)
graph.add(curve)
view = otv.View(graph)
# %%
# Create colored curves
# ---------------------
#
# In some situations, we want to create curves with different colors.
# In this case, the following function generates a color corresponding to the `indexCurve` integer in a ensemble of `maximumNumberOfCurves` curves.
# %%
def createHSVColor(indexCurve, maximumNumberOfCurves):
"""Create a HSV color for the indexCurve-th curve
from a sample with maximum size equal to maximumNumberOfCurves"""
color = ot.Drawable.ConvertFromHSV(
indexCurve * 360.0 / maximumNumberOfCurves, 1.0, 1.0
)
return color
# %%
pofa = ot.HermiteFactory()
# %%
graph = ot.Graph("Orthonormal Hermite polynomials", "x", "y", True, "lower right")
degreemax = 5
for k in range(degreemax):
pk = pofa.build(k)
curve = pk.draw(-3.0, 3.0, 50)
curve.setLegends(["P%d" % (k)])
curve.setColors([createHSVColor(k, degreemax)])
graph.add(curve)
view = otv.View(graph)
# %%
# Create matrices of graphs
# -------------------------
#
# The library provides features to create a grid of graphs. However, we can use the `add_subplot` function from `Matplotlib`.
#
# Let us create two graphs of the PDF and CDF of the following Normal distribution..
# %%
n = ot.Normal()
myPDF = n.drawPDF()
myCDF = n.drawCDF()
# %%
# Using `~openturns.GridLayout`.
grid = ot.GridLayout(1, 2)
grid.setGraph(0, 0, myPDF)
grid.setGraph(0, 1, myCDF)
_ = otv.View(grid)
# %%
# Another method is to create a figure with the `figure` function from `Matplotlib`,
# then add two graphs with the `add_subplot` function.
# We use the `otv.View` function to create the required `Matplotlib` object.
# Since we are not interested by the output of the `View` function, we use the dummy variable `_` as output.
# The title is finally configured with `suptitle`.
# %%
fig = plt.figure(figsize=(12, 4))
ax_pdf = fig.add_subplot(1, 2, 1)
_ = otv.View(myPDF, figure=fig, axes=[ax_pdf])
ax_cdf = fig.add_subplot(1, 2, 2)
_ = otv.View(myCDF, figure=fig, axes=[ax_cdf])
_ = fig.suptitle("The gaussian")
# %%
# Save a plot into a file
# -----------------------
# %%
# The :class:`openturns.viewer.View` class has a `save` method which saves the graph into an image.
# %%
# %%
n = ot.Normal()
graph = n.drawPDF()
view = otv.View(graph)
view.save("normal.png")
# %%
# We can use the `dpi` option to configure the resolution in dots per inch.
# %%
view.save("normal-100dpi.png", dpi=100)
# %%
# Configure the size of a graph with `matplotlib`
# -----------------------------------------------
# %%
# %%
# We first create a graph containing the PDF of a Normal distribution
# %%
n = ot.Normal()
graph = n.drawPDF()
# %%
# The `figure_kw` keyword argument sets the optional arguments of the figure. In the following statement, we set the figure size in inches
# %%
view = otv.View(graph, figure_kw={"figsize": (12, 8)})
# %%
# The `getFigure` method returns the current figure. This allows one to configure it as any other Matplotlib figure. In the following example, we configure the `suptitle`.
# %%
fig = view.getFigure()
fig.suptitle("The suptitle")
fig
# %%
# The `plot_kw` optional argument sets the arguments of the plot. In the following example, we set the color of the plot in blue.
# %%
view = otv.View(graph, plot_kw={"color": "blue"})
# %%
# Display all figures
otv.View.ShowAll()
|