File: plot_pce_design.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (476 lines) | stat: -rw-r--r-- 15,500 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
"""
Compute leave-one-out error of a polynomial chaos expansion
===========================================================
"""

# %%
#
# Introduction
# ------------
#
# In this example, we compute the design matrix of a polynomial chaos
# expansion using the :class:`~openturns.DesignProxy` class.
# Then we compute the analytical leave-one-out error using the
# diagonal of the projection matrix.
# To do this, we use equations from [blatman2009]_ page 85
# (see also [blatman2011]_).
# In this advanced example, we use the :class:`~openturns.DesignProxy`
# and :class:`~openturns.QRMethod` low level classes.
# A naive implementation of this method is presented in
# :doc:`/auto_surrogate_modeling/polynomial_chaos/plot_chaos_cv`
# using K-Fold cross-validation.

# %%
# The design matrix
# -----------------
# In this section, we analyze why the :class:`~openturns.DesignProxy`
# is linked to the classical linear least squares regression problem.
# Let :math:`n` be the number of observations and :math:`m` be the number of coefficients
# of the linear model.
# Let :math:`D \in \mathbb{R}^{n \times m}` be the design matrix, i.e.
# the matrix that produces the predictions of the linear regression model from
# the coefficients:
#
# .. math::
#
#     \hat{\vect{y}} = D \vect{a}
#
# where :math:`\vect{a} \in \mathbb{R}^m` is the vector of coefficients,
# :math:`\hat{y} \in \mathbb{R}^n` is the
# vector of predictions.
# The linear least squares problem is:
#
# .. math::
#
#     \operatorname{argmin}_{\vect{a} \in \mathbb{R}^m}
#     \left\| D \vect{a} - \vect{y} \right\|_2^2.
#
# The solution is given by the normal equations, i.e. the vector of coefficients
# is the solution of the following linear system of equations:
#
# .. math::
#
#     G \vect{a} = D^T \vect{y}
#
# where :math:`G \in \Rset^{n \times n}` is the *Gram* matrix:
#
# .. math::
#
#     G := D^T D.
#
# The hat matrix is the projection matrix defined by:
#
# .. math::
#
#     H := D \left(D^T D\right)^{-1} D^T.
#
# The hat matrix puts a hat to the vector of observations to
# produce the vector of predictions of the linear model:
#
# .. math::
#
#    \hat{\vect{y}} = H \vect{y}
#
# To solve a linear least squares problem, we need to evaluate the
# design matrix :math:`D`, which is the primary goal of
# the :class:`~openturns.DesignProxy` class.
# Let us present some examples of situations where the design matrix
# is required.
#
# - When we use the QR decomposition, we actually do not need to evaluate it in
#   our script: the :class:`~openturns.QRMethod` class knows how to compute the
#   solution without evaluating the Gram matrix :math:`D^T D`.
# - We may need the inverse Gram matrix
#   :math:`\left(D^T D\right)^{-1}` sometimes, for example when we want to create
#   a D-optimal design.
# - Finally, when we want to compute the analytical leave-one-out error,
#   we need to compute the diagonal of the  projection matrix :math:`H`.
#
# For all these purposes, the `DesignProxy` is *the* tool.

# %%
# The leave-one-out error
# -----------------------
# In this section, we show that the leave-one-error of a regression problem
# can be computed using an analytical formula which depends on the hat matrix
# :math:`H`.
# We consider the physical model:
#
# .. math::
#
#     y = g(\vect{x})
#
# where :math:`\vect{x} \in \Rset^{n_X}` is the input and :math:`y \in \Rset` is
# the output.
# Consider the problem of approximating the physical model :math:`g` by the
# linear model:
#
# .. math::
#
#     \hat{y} := \tilde{g}(\vect{x}) = \sum_{k = 1}^m a_k \psi_k(\vect{x})
#
# for any :math:`\vect{x} \in \Rset^{n_X}` where :math:`\{\psi_k : \Rset^{n_X} \rightarrow \Rset\}_{k = 1, \ldots, m}` are the basis functions and
# :math:`\vect{a} \in \Rset^m` is a vector of parameters.
# The mean squared error is ([blatman2009]_ eq. 4.23 page 83):
#
# .. math::
#
#     \operatorname{MSE}\left(\tilde{g}\right)
#     = \mathbb{E}_{\vect{X}}\left[\left(g\left(\vect{X}\right) - \tilde{g}\left(\vect{X}\right) \right)^2 \right]
#
# The leave-one-out error is an estimator of the mean squared error.
# Let:
#
# .. math::
#
#    \cD = \{\vect{x}^{(1)}, \ldots, \vect{x}^{(n)} \in \Rset^{n_X}\}
#
# be independent observations of the input random vector :math:`\vect{X}` and
# let :math:`\{y^{(1)}, \ldots, y^{(n)} \in \Rset^{n_X}\}` be the corresponding
# observations of the output of the physical model:
#
# .. math::
#
#     y^{(j)} = g\left(\vect{x}^{(j)}\right)
#
# for :math:`j = 1, ..., n`.
# Let :math:`\vect{y} \in \Rset^n` be the vector of observations:
#
# .. math::
#
#     \vect{y} = (y^{(1)}, \ldots, y^{(n)})^T.
#
#
# Consider the following set of inputs, let aside the :math:`j`-th input:
#
# .. math::
#
#     \cD^{(-j)} := \left\{\vect{x}^{(1)}, \ldots, \vect{x}^{(j - 1)}, \vect{x}^{(j + 1)}, \ldots, \vect{x}^{(n)}\right\}
#
# for :math:`j \in \{1, ..., n\}`.
# Let :math:`\vect{y}^{(-j)} \in \Rset^{n - 1}` be the vector of
# observations, let aside the :math:`j`-th observation:
#
# .. math::
#
#     \vect{y}^{(-j)} = (y^{(1)}, \ldots, y^{(j - 1)}, y^{(j + 1)}, \ldots, y^{(n)})^T
#
# for :math:`j \in \{1, ..., n\}`.
# Let :math:`\tilde{g}^{(-j)}` the metamodel built on the data set :math:`\left(\cD^{(-j)}, \vect{y}^{(-j)}\right)`.
# The leave-one-out error is:
#
# .. math::
#
#    \widehat{\operatorname{MSE}}_{LOO}\left(\tilde{g}\right)
#    = \frac{1}{n} \sum_{j = 1}^n \left(g\left(\vect{x}^{(j)}\right) - \tilde{g}^{(-j)}\left(\vect{x}^{(j)}\right)\right)^2
#
# The leave-one-out error is sometimes referred to as *predicted residual sum of
# squares* (PRESS) or *jacknife error*.
# In the next section, we show how this estimator can be computed analytically,
# using the hat matrix.

# %%
# The analytical leave-one-out error
# ----------------------------------
# One limitation of the previous equation is that we must train
# :math:`n` different surrogate models, which can be long in some situations.
# To overcome this limitation, we can use the following equations.
# Let :math:`\boldsymbol{\Psi} \in \Rset^{n \times m}` design matrix ([blatman2009]_ eq. 4.32 page 85):
#
# .. math::
#
#     \boldsymbol{\Psi}_{jk} = \psi_k\left(\vect{x}^{(j)}\right)
#
# for :math:`j = 1, ..., n` and :math:`k = 1, ..., m`.
# The matrix :math:`\boldsymbol{\Psi}` is mathematically equal to the
# :math:`D` matrix presented earlier in the present document.
# Let :math:`H \in \Rset^{n \times n}` be the projection matrix:
#
# .. math::
#
#     H = \boldsymbol{\Psi} \left(\boldsymbol{\Psi}^T \boldsymbol{\Psi}\right) \boldsymbol{\Psi}^T.
#
# It can be proved that  ([blatman2009]_ eq. 4.33 page 85):
#
# .. math::
#
#    \widehat{\operatorname{MSE}}_{LOO}\left(\tilde{g}\right)
#    = \frac{1}{n} \sum_{j = 1}^n \left(\frac{g\left(\vect{x}^{(j)}\right) - \tilde{g}\left(\vect{x}^{(j)}\right)}{1 - h_{jj}}\right)^2
#
# where :math:`h_{jj} \in \Rset` is the diagonal of the hat matrix
# for :math:`j \in \{1, ..., n\}`.
# The goal of this example is to show how to implement the previous equation
# using the :class:`~openturns.DesignProxy` class.

import openturns as ot
import openturns.viewer as otv
import numpy as np
from openturns.usecases import ishigami_function


# %%
# Create the polynomial chaos model
# ---------------------------------

# %%
# We load the Ishigami model.
im = ishigami_function.IshigamiModel()

# %%
# Create a training sample.

# %%
nTrain = 100
xTrain = im.distribution.getSample(nTrain)
yTrain = im.model(xTrain)

# %%
# Create the chaos.


def ComputeSparseLeastSquaresFunctionalChaos(
    inputTrain,
    outputTrain,
    multivariateBasis,
    basisSize,
    distribution,
    sparse=True,
):
    """
    Create a sparse polynomial chaos based on least squares.

    * Uses the enumerate rule in multivariateBasis.
    * Uses the LeastSquaresStrategy to compute the coefficients based on
      least squares.
    * Uses LeastSquaresMetaModelSelectionFactory to use the LARS selection method.
    * Uses FixedStrategy in order to keep all the coefficients that the
      LARS method selected.

    Parameters
    ----------
    inputTrain : ot.Sample
        The input design of experiments.
    outputTrain : ot.Sample
        The output design of experiments.
    multivariateBasis : ot.Basis
        The multivariate chaos basis.
    basisSize : int
        The size of the function basis.
    distribution : ot.Distribution.
        The distribution of the input variable.
    sparse: bool
        If True, create a sparse PCE.

    Returns
    -------
    result : ot.PolynomialChaosResult
        The estimated polynomial chaos.
    """
    if sparse:
        selectionAlgorithm = ot.LeastSquaresMetaModelSelectionFactory()
    else:
        selectionAlgorithm = ot.PenalizedLeastSquaresAlgorithmFactory()
    projectionStrategy = ot.LeastSquaresStrategy(
        inputTrain, outputTrain, selectionAlgorithm
    )
    adaptiveStrategy = ot.FixedStrategy(multivariateBasis, basisSize)
    chaosAlgorithm = ot.FunctionalChaosAlgorithm(
        inputTrain, outputTrain, distribution, adaptiveStrategy, projectionStrategy
    )
    chaosAlgorithm.run()
    chaosResult = chaosAlgorithm.getResult()
    return chaosResult


# %%
multivariateBasis = ot.OrthogonalProductPolynomialFactory([im.X1, im.X2, im.X3])
totalDegree = 5
enumerateFunction = multivariateBasis.getEnumerateFunction()
basisSize = enumerateFunction.getBasisSizeFromTotalDegree(totalDegree)
print("Basis size = ", basisSize)

sparse = False  # For full PCE and comparison with analytical LOO error
chaosResult = ComputeSparseLeastSquaresFunctionalChaos(
    xTrain,
    yTrain,
    multivariateBasis,
    basisSize,
    im.distribution,
    sparse,
)

# %%
# The DesignProxy
# ---------------

# %%
# The :class:`~openturns.DesignProxy` class provides methods used to create the objects necessary to solve
# the least squares problem.
# More precisely, it provides the :meth:`~openturns.DesignProxy.computeDesign`
# method that we need to evaluate the design matrix.
# In many cases we do not need that matrix, but the Gram matrix (or its inverse).
# The :class:`~openturns.DesignProxy` class is needed by a least squares solver,
# e.g. :class:`~openturns.QRMethod` that knows how to actually compute the coefficients.
#
# Another class is the :class:`~openturns.Basis` class which manages a set of
# functions as the functional basis for the decomposition.
# This basis is required by the constructor of the :class:`~openturns.DesignProxy` because it defines
# the columns of the matrix.
#
# In order to create that basis, we use the :meth:`~openturns.FunctionalChaosResult.getReducedBasis` method,
# because the model selection (such as :class:`~openturns.LARS` for example)
# may have selected functions which best predict the output.
# This may reduce the number of coefficients to estimate and
# improve their accuracy.
# This is important here, because it defines the number of
# columns in the design matrix.

# %%
reducedBasis = chaosResult.getReducedBasis()  # As a result of the model selection
transformation = (
    chaosResult.getTransformation()
)  # As a result of the input distribution
zTrain = transformation(
    xTrain
)  # Map from the physical input into the transformed input

# %%
# We can now create the design.

# %%
designProxy = ot.DesignProxy(zTrain, reducedBasis)

# %%
# To actually evaluate the design matrix, we
# can specify the columns that we need to evaluate.
# This can be useful when we perform model selection, because
# not all columns are always needed.
# This can lead to CPU and memory savings.
# In our case, we evaluate all the columns, which corresponds
# to evaluate all the functions in the basis.

# %%
reducedBasisSize = reducedBasis.getSize()
print("Reduced basis size = ", reducedBasisSize)
allIndices = range(reducedBasisSize)
designMatrix = designProxy.computeDesign(allIndices)
print("Design matrix : ", designMatrix.getNbRows(), " x ", designMatrix.getNbColumns())

# %%
# Solve the least squares problem.
lsqMethod = ot.QRMethod(designProxy, allIndices)
betaHat = lsqMethod.solve(yTrain.asPoint())

# %%
# Compute the inverse of the Gram matrix.

# %%
inverseGram = lsqMethod.getGramInverse()
print("Inverse Gram : ", inverseGram.getNbRows(), "x", inverseGram.getNbColumns())

# %%
# Compute the raw leave-one-out error
# -----------------------------------
# In this section, we show how to compute the raw leave-one-out
# error using the naive formula.
# To do this, we could use the :class:`~openturns.LeaveOneOutSplitter` class
# or the :class:`~openturns.KFoldSplitter` class with `K = N`.
# Since this would complicate the script and obscure its purpose,
# we implement the leave-one-out method naively using the `pop` method of the
# `list` Python object.

# %%
# Compute leave-one-out error
predictionsLOO = ot.Sample(nTrain, 1)
residuals = ot.Point(nTrain)
for j in range(nTrain):
    indicesLOO = list(range(nTrain))
    indicesLOO.pop(j)
    xTrainLOO = xTrain[indicesLOO]
    yTrainLOO = yTrain[indicesLOO]
    xj = xTrain[j]
    yj = yTrain[j]

    chaosResultLOO = ComputeSparseLeastSquaresFunctionalChaos(
        xTrainLOO,
        yTrainLOO,
        multivariateBasis,
        basisSize,
        im.distribution,
        sparse,
    )
    metamodelLOO = chaosResultLOO.getMetaModel()
    predictionsLOO[j] = metamodelLOO(xj)
    residuals[j] = (yj - predictionsLOO[j])[0]
mseLOO = residuals.normSquare() / nTrain
print(f"mseLOO = {mseLOO:.6g}")

# %%
# For each point in the training sample, we plot the predicted leave-one-out
# output prediction depending on the observed output.

graph = ot.Graph("Leave-one-out validation", "Observation", "LOO prediction", True)
cloud = ot.Cloud(yTrain, predictionsLOO)
graph.add(cloud)
curve = ot.Curve(yTrain, yTrain)
graph.add(curve)
view = otv.View(graph)

# %%
# In the previous method, we must pay attention to the fact that
# the comparison that we are going to make is not necessarily
# valid if we use the :class:`~openturns.LARS` selection method,
# because this may lead to a different active basis for each leave-one-out
# sample.
#
# One limitation of the previous script is that it can be relatively
# long when the sample size increases or when the size of the
# functional basis increases.
# In the next section, we use the analytical formula: this can leads
# to significant time savings in some cases.


# %%
# Compute the analytical leave-one-out error
# ------------------------------------------

# %%
# Get the diagonal of the projection matrix.
# This is a :class:`~openturns.Point`.

# %%
diagonalH = lsqMethod.getHDiag()
print("diagonalH : ", diagonalH.getDimension())

# %%
# Compute the metamodel predictions.

# %%
metamodel = chaosResult.getMetaModel()
yHat = metamodel(xTrain)

# %%
# Compute the residuals.

# %%
residuals = yTrain.asPoint() - yHat.asPoint()

# %%
# Compute the analytical leave-one-out error:
# perform elementwise division and exponentiation

# %%
delta = np.array(residuals) / (1.0 - np.array(diagonalH))
squaredDelta = delta**2
leaveOneOutMSE = ot.Sample.BuildFromPoint(squaredDelta).computeMean()[0]
print("MSE LOO = ", leaveOneOutMSE)
relativeLOOError = leaveOneOutMSE / yTrain.computeVariance()[0]
q2LeaveOneOut = 1.0 - relativeLOOError
print("Q2 LOO = ", q2LeaveOneOut)

# %%
# We see that the MSE leave-one-out error is equal to the naive LOO error.
# The numerical differences between the two values are the consequences
# of the rounding errors in the numerical evaluation of the hat matrix.

otv.View.ShowAll()