1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
"""
Compute confidence intervals of a univariate noisy function
===========================================================
"""
# %%
#
# Introduction
# ------------
#
# In this example, we compute the pointwise confidence interval of the
# estimator of the conditional expectation given an input.
# We consider noisy observations of the sine function.
# Then we perform linear least squares regression to fit an order 4
# polynomial.
# For a given point x, the code computes the confidence interval
# of the prediction y.
# This is the confidence interval of the conditional expectation
# given the input.
# Secondly, we compute the confidence interval of the noisy output observations.
# In this advanced example, we use the :class:`~openturns.QRMethod` low level class.
# Another example of this method is presented in
# :doc:`/auto_numerical_methods/general_methods/plot_regression_interval`.
# %%
import openturns as ot
import openturns.viewer as otv
import numpy as np
palette = ot.Drawable.BuildTableauPalette(5)
# %%
#
# Compute the data
# ----------------
#
# We generate noisy observations from the sine function.
# We define the function that we are going to approximate.
# %%
g = ot.SymbolicFunction(["x"], ["sin(2 * pi_ * x)"])
# %%
# We plot the function depending on the input.
def plotFunction(g, color, lineStyle="dotted"):
curve = g.draw(0.0, 1.0).getDrawable(0)
curve.setColor(color)
curve.setLineStyle("dotted")
curve.setLegend("True")
return curve
graph = ot.Graph("Polynomial curve fitting", "x", "y", True, "upper right")
# The "unknown" function
graph.add(plotFunction(g, palette[0]))
view = otv.View(graph)
# %%
# This is a nice, smooth function to approximate with polynomials.
#
def linearSample(xmin, xmax, npoints):
"""Returns a sample created from a regular grid
from xmin to xmax with npoints points."""
step = (xmax - xmin) / (npoints - 1)
rg = ot.RegularGrid(xmin, step, npoints)
vertices = rg.getVertices()
return vertices
# %%
# We consider observation points in the interval [0,1].
nTrain = 100
xTrain = linearSample(0, 1, nTrain)
# %%
# Assume that the observations are noisy and that the noise follows
# a Normal distribution with zero mean and small standard deviation.
noise = ot.Normal(0, 0.5)
noiseSample = noise.getSample(nTrain)
# %%
# The following code computes the observation as the sum of the
# function value and of the noise.
# The couple `(xTrain,yTrain)` is the training set: it is used
# to compute the coefficients of the polynomial model.
yTrain = g(xTrain) + noiseSample
print(yTrain[:5])
# %%
# Then we plot the function and the observations.
def plotData(xTrain, yTrain, color, pointStyle="circle"):
cloud = ot.Cloud(xTrain, yTrain)
cloud.setPointStyle(pointStyle)
cloud.setLegend("Observations")
cloud.setColor(palette[1])
return cloud
graph = ot.Graph("Polynomial curve fitting", "x", "y", True, "upper right")
# The "unknown" function
graph.add(plotFunction(g, palette[0]))
# Training set
graph.add(plotData(xTrain, yTrain, palette[1]))
view = otv.View(graph)
# %%
# We see that the noisy observations of the function are relatively
# large compared to the function values.
# It may not be obvious that a regression model can fit that data well.
# %%
# Compute the coefficients of the polynomial decomposition
# --------------------------------------------------------
#
# %%
# In order to approximate the function with polynomials up to degree 4,
# we create a list of strings containing the associated monomials.
# We perform the loop from 0 up to `totalDegree` (but the `range`
# function takes `totalDegree + 1` as its second input argument).
totalDegree = 4
polynomialCollection = [f"x^{degree}" for degree in range(0, totalDegree + 1)]
print(polynomialCollection)
# %%
# Given the list of strings, we create a symbolic function which computes the
# values of the monomials.
basisFunction = ot.SymbolicFunction(["x"], polynomialCollection)
print(basisFunction)
# %%
# Evaluate the design matrix as the value of the basis functions on the
# training sample.
designSampleTrain = basisFunction(xTrain)
print(designSampleTrain[:5])
# %%
# Convert the design sample into a design matrix and create
# an instance of the :class:`~openturns.QRMethod` class.
# This class has the :meth:`~openturns.QRMethod.getGramInverse` method that
# we need to compute the confidence interval.
designMatrixTrain = ot.Matrix(designSampleTrain)
lsqMethod = ot.QRMethod(designMatrixTrain)
# %%
# Solve the linear least squares problem and get the vector of coefficients.
betaHat = lsqMethod.solve(yTrain.asPoint())
print(betaHat)
# %%
# Compute residuals and variance
# ------------------------------
#
# We need to estimate the variance of the residuals.
# To do this we evaluate the predictions of the regression model on
# the training sample and compute the residuals.
yHatTrain = designMatrixTrain * betaHat
residuals = yHatTrain - yTrain.asPoint()
sampleSize = designMatrixTrain.getNbRows()
print("sampleSize=", sampleSize)
nParameters = designMatrixTrain.getNbColumns()
print("nParameters = ", nParameters)
sigma2Hat = residuals.normSquare() / (sampleSize - nParameters)
print("sigma2Hat = ", sigma2Hat)
# %%
# The couple `(xTest,yHatTest)` is the set where we want to evaluate the
# prediction confidence intervals.
# In order to evaluate the predictions from the regression model, multiply
# the design matrix evaluated on the test sample with the vector of coefficients.
nTest = 50
xTest = linearSample(0, 1, nTest)
designMatrixTest = ot.Matrix(basisFunction(xTest))
yHatTest = ot.Sample.BuildFromPoint(designMatrixTest * betaHat)
# %%
# Then we plot the true function, its noisy observations and the least
# squares model of degree 4.
def plotPredictions(xTest, yHatTest, totalDegree, color):
curve = ot.Curve(xTest, yHatTest)
curve.setLegend(f"L.S. degree {totalDegree}")
curve.setColor(color)
return curve
graph = ot.Graph("Polynomial curve fitting", "x", "y", True, "upper right")
# The "unknown" function
graph.add(plotFunction(g, palette[0]))
# Training set
graph.add(plotData(xTrain, yTrain, palette[1]))
# Predictions
graph.add(plotPredictions(xTest, yHatTest, totalDegree, palette[2]))
view = otv.View(graph)
# %%
# We see that the least squares polynomial model
# is relatively close to the true function.
# %%
# Compute confidence intervals
# ----------------------------
#
# The next function will help to compute confidence intervals.
# It is based on regression analysis.
def computeRegressionConfidenceInterval(
lsqMethod,
betaHat,
sigma2Hat,
designSample,
alpha=0.95,
mean=True,
epsilonSigma=1.0e-5,
):
"""
Compute a confidence interval for the estimate of the mean.
Evaluates this confidence interval at points in the design matrix.
This code is based on (Rawlings, Pantula & David, 1998)
eq. 3.51 and 3.52 page 90.
Parameters
----------
lsqMethod: ot.LeastSquaresMethod
The linear least squares method (e.g. QR or Cholesky).
betaHat : ot.Point(parameterDimension)
The solution of the least squares problem.
sigma2Hat : float > 0.0
The estimate of the variance.
designSample : ot.Sample(size, parameterDimension)
The design matrix of the linear model.
This is the value of the functional basis depending on the
input sample.
Each row represents the input where the confidence interval
is to be computed.
alpha : float, in [0, 1]
The width of the confidence interval.
mean : bool
If True, then computes the confidence interval of the mean.
This interval contains yTrue = E[y|x] with probability alpha.
Otherwise, computes a confidence interval of the prediction at point x.
This interval contains y|x with probability alpha.
epsilonSigma : float > 0.0
A relatively small number. The minimal value of variance, which
avoids a singular Normal distribution.
Reference
---------
- O. Rawlings John, G. Pantula Sastry, and A. Dickey David.
Applied regression analysis—a research tool. Springer New York, 1998.
Returns
-------
confidenceBounds : ot.Sample(size, 2)
The first column contains the lower bound.
The second column contains the upper bound.
"""
inverseGram = lsqMethod.getGramInverse()
sampleSize = designSample.getSize()
confidenceBounds = ot.Sample(sampleSize, 2)
for i in range(sampleSize):
x0 = designSample[i, :]
meanYHat = x0.dot(betaHat)
sigma2YHat = x0.dot(inverseGram * x0) * sigma2Hat
if not mean:
sigma2YHat += sigma2Hat
sigmaYHat = np.sqrt(sigma2YHat)
sigmaYHat = max(epsilonSigma, sigmaYHat) # Prevents a zero s.e.
distribution = ot.Normal(meanYHat, sigmaYHat)
interval = distribution.computeBilateralConfidenceInterval(alpha)
lower = interval.getLowerBound()
upper = interval.getUpperBound()
confidenceBounds[i, 0] = lower[0]
confidenceBounds[i, 1] = upper[0]
return confidenceBounds
# %%
# We evaluate the value of the basis functions on the test sample.
# This sample is used to compute the confidence interval.
# %%
designSampleTest = basisFunction(xTest)
# %%
# Compute the confidence interval.
# %%
alpha = 0.95
confidenceIntervalMean = computeRegressionConfidenceInterval(
lsqMethod, betaHat, sigma2Hat, designSampleTest, alpha=alpha
)
# %%
# On output, the `confidenceIntervalMean` variable is a :class:`~openturns.Sample`
# of size 50 and dimension 2.
# %%
print(confidenceIntervalMean.getSize())
# %%
# Plot the confidence interval (C.I.) of the pointwise estimator
# of the conditional expectation.
# %%
def plotConfidenceInterval(
xTest, confidenceIntervalSample, color, lineStyle="dashed", label=""
):
graph = ot.Graph()
curve = ot.Curve(xTest, confidenceIntervalSample[:, 0])
curve.setLegend(label)
curve.setColor(color)
curve.setLineStyle(lineStyle)
graph.add(curve)
curve = ot.Curve(xTest, confidenceIntervalSample[:, 1])
curve.setLegend("")
curve.setColor(color)
curve.setLineStyle(lineStyle)
graph.add(curve)
return graph
graph = ot.Graph("Polynomial curve fitting", "x", "y", True, "upper right")
# The "unknown" function
graph.add(plotFunction(g, palette[0]))
# Training set
graph.add(plotData(xTrain, yTrain, palette[1]))
# Predictions
graph.add(plotPredictions(xTest, yHatTest, totalDegree, palette[2]))
# Confidence interval of the mean
graph.add(
plotConfidenceInterval(
xTest,
confidenceIntervalMean,
palette[3],
label="Mean %.0f%%" % (100.0 * alpha),
)
)
view = otv.View(graph)
# %%
# We see that the pointwise confidence interval contains the true
# model for most points.
# For a small set of points, there are points which are not within
# the bounds, but are not too far away.
# The observations, however, are not contained within these bounds.
# This is the goal of the next cell.
# %%
# Finally, compute a 95% C.I. of the observations.
alpha = 0.95
confidenceIntervalObservations = computeRegressionConfidenceInterval(
lsqMethod,
betaHat,
sigma2Hat,
designSampleTest,
alpha=alpha,
mean=False,
)
# %%
# Then we plot the function, its least squares approximation, the
# C.I. of the mean and the C.I. of the observations.
# sphinx_gallery_thumbnail_number = 5
graph = ot.Graph("Polynomial curve fitting", "x", "y", True, "upper right")
# The "unknown" function
graph.add(plotFunction(g, palette[0]))
# Training set
graph.add(plotData(xTrain, yTrain, palette[1]))
# Predictions
graph.add(plotPredictions(xTest, yHatTest, totalDegree, palette[2]))
# Confidence interval of the mean
graph.add(
plotConfidenceInterval(
xTest,
confidenceIntervalMean,
palette[3],
label="Mean %.0f%%" % (100.0 * alpha),
)
)
# Confidence interval of the observations.
graph.add(
plotConfidenceInterval(
xTest,
confidenceIntervalObservations,
palette[4],
label="Obs. %.0f%%" % (100.0 * alpha),
)
)
view = otv.View(graph)
# %%
# We see that the confidence interval of the observations contain
# most of the observations.
# The confidence interval of the observations is much larger than the
# C.I. of the mean, as expected from the statistical model.
# %%
# Display all figures
otv.View.ShowAll()
|