File: plot_iterative_moments.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (78 lines) | stat: -rw-r--r-- 2,455 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
Estimate moments iteratively
============================
"""

# %%
# In this example, we use the :class:`~openturns.IterativeMoments` class
# to compute iterative statistics.
# This class stores central moments up to a prescribed order iteratively.
# Then several statistics based on the moments are available depending on the
# chosen order.

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# We first create a one-dimensional Gaussian random variable to generate data.
dim = 1
distNormal = ot.Normal(dim)

# %%
# Then we use the central moments up to order 4 with the
# :class:`~openturns.IterativeMoments` class by giving the order (here 4)
# and the dimension (here 1):

# %%
order = 4
iterMoments = ot.IterativeMoments(order, dim)


# %%
# We can now perform the simulations.
# The :class:`~openturns.IterativeMoments` object stores the central
# moments iteratively.
# We first increment the object with one :class:`~openturns.Point` at a time.
# At any given step the current mean is obtained thanks to
# the :meth:`~openturns.IterativeMoments.getMean` method and the
# current number of iterations is given by
# the :meth:`~openturns.IterativeMoments.getIterationNumber` method.
size = 2000
meanEvolution = ot.Sample()
for i in range(size):
    point = distNormal.getRealization()
    iterMoments.increment(point)
    meanEvolution.add(iterMoments.getMean())

# %%
# We display the evolution of the mean.
iterationSample = ot.Sample.BuildFromPoint(range(1, size + 1))
curve = ot.Curve(iterationSample, meanEvolution)
graph = ot.Graph("Evolution of the mean", "iteration nb", "mean", True)
graph.add(curve)
graph.setLogScale(ot.GraphImplementation.LOGX)
view = otv.View(graph)

# %%
# We can also increment with a :class:`~openturns.Sample`.

# %%
sample = distNormal.getSample(size)
iterMoments.increment(sample)

# %%
# We print the total number of iterations and the mean.
print("Total number of iteration: ", iterMoments.getIterationNumber())
print("Mean: ", iterMoments.getMean())

# %%
# For the order of the `iterMoments` object is 4, we also have access to
# other statistics such as the variance (order 2), the skewness (order 3)
# or the kurtosis (order 4). For instance, a specified order of 3 would leave
# only the variance and the skewness available.
print("Variance: ", iterMoments.getVariance())
print("Skewness: ", iterMoments.getSkewness())
print("Kurtosis: ", iterMoments.getKurtosis())

otv.View.ShowAll()