File: plot_iterative_threshold.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (111 lines) | stat: -rw-r--r-- 3,368 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""
Estimate threshold exceedance iteratively
=========================================
"""

# %%
# In this example, we use the :class:`~openturns.IterativeThresholdExceedance`
# class to count the number of threshold exceedances.

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# We first create a one-dimensional Gaussian random variable to generate data.
dim = 1
distNormal = ot.Normal(dim)

# %%
# Let us consider a threshold value of 1.0. Each data value higher than 1.0 is
# counted as one exceedance. The counter used by the
# :class:`~openturns.IterativeThresholdExceedance` class is updated iteratively.

# %%
threshold = 1.0
algo = ot.IterativeThresholdExceedance(dim, ot.Greater(), threshold)

# %%
# A simple computation shows that the probability of the data being higher than :math:`1` is :math:`0.1587` (with 4 significant digits).
distribution = ot.Normal()
exactProbability = distribution.computeComplementaryCDF(threshold)
print("Exact probability: ", exactProbability)

# %%
# We can now perform the simulations.
# In our case most of the data fall below the specified threshold value so
# the number of exceedances should be low.

# %%
# We first increment the object one :class:`~openturns.Point` at a time.
# At any given step the current number of exceedance is obtained with
# the :meth:`~openturns.IterativeThresholdExceedance.getThresholdExceedance()` method.

# %%
size = 5000
exceedanceNumbers = ot.Sample()
probabilityEstimateSample = ot.Sample()
for i in range(size):
    point = distNormal.getRealization()
    algo.increment(point)
    numberOfExceedances = algo.getThresholdExceedance()[0]
    exceedanceNumbers.add([numberOfExceedances])
    probabilityEstimate = numberOfExceedances / algo.getIterationNumber()
    probabilityEstimateSample.add([probabilityEstimate])

# %%
# We display the evolution of the number of exceedances.

# %%
curve = ot.Curve(exceedanceNumbers)
curve.setLegend("number of exceedance")
#
graph = ot.Graph(
    "Evolution of the number of exceedances",
    "iteration nb",
    "number of exceedances",
    True,
)
graph.add(curve)
graph.setLegends(["number of exceedances"])
graph.setLegendPosition("lower right")
view = otv.View(graph)

# %%
# The following plot shows that the probability of exceeding the threshold converges.

# %%
iterationSample = ot.Sample.BuildFromPoint(range(1, size + 1))
curve = ot.Curve(iterationSample, probabilityEstimateSample)
curve.setLegend("Prob. of exceeding the threshold")
#
exactCurve = ot.Curve([1, size], [exactProbability, exactProbability])
exactCurve.setLegend("Exact")
#
graph = ot.Graph(
    "Evolution of the sample probability",
    "iteration nb",
    "estimate of the probability",
    True,
)
graph.add(curve)
graph.add(exactCurve)
graph.setLegendPosition("upper left")
graph.setLogScale(ot.GraphImplementation.LOGX)
view = otv.View(graph)

# %%
# We can also increment with a :class:`~openturns.Sample`.

# %%
sample = distNormal.getSample(size)
algo.increment(sample)
numberOfExceedances = algo.getThresholdExceedance()[0]
print("Number of exceedance: ", numberOfExceedances)

# The empirical probability is close to the exact value.
numberOfExceedances = algo.getThresholdExceedance()[0]
probabilityEstimate = numberOfExceedances / algo.getIterationNumber()
print("Empirical exceedance prb: ", probabilityEstimate)

otv.View.ShowAll()