1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
"""
Control algorithm termination
=============================
"""
# %%
# In this examples we are going to expose ways to control the termination of optimization and simulation algorithms using callbacks.
#
# %%
import openturns as ot
# %%
# Define an event to compute a probability
myFunction = ot.SymbolicFunction(["E", "F", "L", "I"], ["-F*L^3/(3.0*E*I)"])
dim = myFunction.getInputDimension()
mean = [50.0, 1.0, 10.0, 5.0]
sigma = [1.0] * dim
R = ot.IdentityMatrix(dim)
myDistribution = ot.Normal(mean, sigma, R)
vect = ot.RandomVector(myDistribution)
output = ot.CompositeRandomVector(myFunction, vect)
myEvent = ot.ThresholdEvent(output, ot.Less(), -3.0)
# %%
# **Stop a FORM algorithm using a calls number limit**
#
# A FORM algorithm termination can be controlled by the maximum number of iterations
#
# of its underlying optimization solver, but not directly by a maximum number of evaluations.
# %%
# Create the optimization algorithm
myCobyla = ot.Cobyla()
myCobyla.setMaximumCallsNumber(400)
myCobyla.setMaximumAbsoluteError(1.0e-10)
myCobyla.setMaximumRelativeError(1.0e-10)
myCobyla.setMaximumResidualError(1.0e-10)
myCobyla.setMaximumConstraintError(1.0e-10)
# %%
# Define the stopping criterion
def stop():
return myFunction.getCallsNumber() > 100
myCobyla.setStopCallback(stop)
# %%
# Run FORM
myCobyla.setStartingPoint(mean)
algo = ot.FORM(myCobyla, myEvent)
algo.run()
result = algo.getResult()
print("event probability:", result.getEventProbability())
print("calls number:", myFunction.getCallsNumber())
# %%
# **Stop a simulation algorithm using a time limit**
#
# Here we will create a callback to not exceed a specified simulation time.
# %%
# Create simulation
experiment = ot.MonteCarloExperiment()
algo = ot.ProbabilitySimulationAlgorithm(myEvent, experiment)
algo.setMaximumOuterSampling(1000000)
algo.setMaximumCoefficientOfVariation(-1.0)
# %%
# Define the stopping criterion
algo.setMaximumTimeDuration(0.01)
# %%
# Run the algorithm
algo.run()
result = algo.getResult()
pf = result.getProbabilityEstimate()
nCalls = myFunction.getCallsNumber()
|