1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
|
"""
Mix/max search and sensitivity from design
==========================================
"""
# %%
#
# In this example, we are going to evaluate the minimum and maximum values of the output variable of interest from a sample
# and to evaluate the gradient of the limit-state function defining the output variable of interest at a particular point.
# %%
import openturns as ot
# %%
# Create the marginal distributions of the parameters.
dist_E = ot.Beta(0.93, 2.27, 2.8e7, 4.8e7)
dist_F = ot.LogNormalMuSigma(30000, 9000, 15000).getDistribution()
dist_L = ot.Uniform(250, 260)
dist_I = ot.Beta(2.5, 1.5, 3.1e2, 4.5e2)
marginals = [dist_E, dist_F, dist_L, dist_I]
distribution = ot.JointDistribution(marginals)
# %%
# Sample the inputs.
sampleX = distribution.getSample(100)
# %%
# Create the model.
model = ot.SymbolicFunction(["E", "F", "L", "I"], ["F*L^3/(3*E*I)"])
# %%
# Evaluate the outputs.
sampleY = model(sampleX)
# %%
# Get minimum and maximum values of both inputs and output variables.
minY = sampleY.getMin()
minX = sampleX[sampleY.find(minY)]
print("min: y=", minY, " with x=", minX)
maxY = sampleY.getMax()
maxX = sampleX[sampleY.find(maxY)]
print("max: y=", maxY, " with x=", maxX)
# %%
# Get sensitivity at minimum input values.
model.gradient(minX)
|