File: plot_compound_distribution.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (77 lines) | stat: -rw-r--r-- 2,539 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
Create a compound distribution
===================================
"""

# %%
# In this example we are going to build the distribution of the random vector :math:`\inputRV`
# defined by the conditional distribution of:
#
# .. math::
#
#    \inputRV|\vect{\Theta}
#
# where :math:`\vect{\Theta}` is the output of the random variable :math:`\vect{Y}` through the link
# function :math:`f`:
#
# .. math::
#
#    \vect{\Theta} & = f(\vect{Y})\\
#    \vect{Y} & \sim \cL_{\vect{Y}}
#
# This example creates a :class:`~openturns.CompoundDistribution` which offers all the methods
# attached to the distributions.
#
# We consider the case where :math:`X` is of dimension 1 and follows a uniform distribution defined
# by:
#
# ===============  =========================================================  ===============================
# Variable         Distribution                                               Parameter
# ===============  =========================================================  ===============================
# :math:`X`        :class:`~openturns.Uniform` (:math:`a, b`)                 :math:`(a,b) = (Y, 1+Y^2)`
# :math:`Y`        :class:`~openturns.Uniform` (:math:`c, d`)                 :math:`(c,d) = (-1, 1)`
# ===============  =========================================================  ===============================
#

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# Create the :math:`Y` distribution.
YDist = ot.Uniform(-1.0, 1.0)

# %%
# Create the link function :math:`f: y \rightarrow (y, 1+y^2)`.
f = ot.SymbolicFunction(["y"], ["y", "1+y^2"])

# %%
# Create the conditional distribution of :math:`\vect{X}|\vect{\Theta}`: as the parameters have no
# importance, we use the default distribution.
XgivenThetaDist = ot.Uniform()

# %%
# In this example, the range of :math:`\vect{X}` depends on its parameters which are random. Thus, the model is not regular.
# We advice to change the discretization method that performs the integration.
# By default, this method is the quadrature method *GaussProduct*. We prefer to use the *QMC*.
# We use the :class:`~openturns.ResourceMap`.
ot.ResourceMap.SetAsString('CompoundDistribution-ContinuousDiscretizationMethod', 'QMC')

# %%
# Create the compound distribution of :math:`X`.
XDist = ot.CompoundDistribution(XgivenThetaDist, YDist, f)
XDist.setDescription([r"$X|\mathbf{\boldsymbol{\Theta}} = f(Y)$"])
XDist

# %%
# Get a sample:
XDist.getSample(5)

# %%
# Draw the PDF.
graph = XDist.drawPDF()
view = otv.View(graph)


# %%
view.ShowAll()