File: plot_mixture_distribution.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (318 lines) | stat: -rw-r--r-- 9,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
"""
Create a mixture of distributions
=================================
"""

# %%
#
# Introduction
# ------------
#
# In this example, we show how to build a distribution which is a Mixture from a collection of
# distributions of the same dimension :math:`d \geq 1`. We denote by :math:`\inputRV`
# the random vector with such a distribution.
#
# Let :math:`(\cL_1, \dots, \cL_N)` a collection of distributions and :math:`(\alpha_1, \dots,
# \alpha_N)` a collection of positive weights such that :math:`\sum_{i=1}^N \alpha_i = 1`.
# Let :math:`\inputRV_i` be a random vector whose distribution is :math:`\cL_i`.
#
# In the case where all the :math:`\cL_i` have a probability density function :math:`\mu_i`,
# then the mixture has a probability density function :math:`\inputMeasure` defined by:
#
# .. math::
#    \inputMeasure(\vect{x}) =  \sum_{i=1}^N \alpha_i \mu_i(\vect{x})
#
# In the case where all the :math:`\cL_i` are discrete, then the mixture is discrete and its
# probability distribution function is defined by:
#
# .. math::
#    \Prob{\inputRV = \vect{x}} =  \sum_{i=1}^N \alpha_i \Prob{\vect{X}_i = \vect{x}}
#
# In the case where some of the :math:`\cL_i`  have a probability density function and
# the other ones are discrete, then the mixture is not discrete and does not have a
# probability density function. Its cumulative distribution function is defined by:
#
# .. math::
#    F_\inputRV(\vect{x}) =  \sum_{i=1}^N \alpha_i F_{\vect{X}_i}(\vect{x})
#
# We illustrate the following particular cases:
#
# - Case 1a: Mixture of continuous distributions,
# - Case 1b: Mixture of copulas,
# - Case 1c: Mixture of a Histogram and a Generalized Pareto Distribution,
# - Case 2: Mixture of discrete distributions,
# - Case 3: Mixture of discrete and continuous distributions.

# %%
import openturns as ot
import openturns.viewer as otv


# %%
# Case 1a: Mixture of continuous distributions
# --------------------------------------------
# In this case, we build the mixture of the following continuous distributions:
#
# - a :class:`~openturns.Triangular`,
# - a :class:`~openturns.Normal`,
# - a :class:`~openturns.Uniform`.
#
# The weigths are automatically normalized.

# %%
# We define the collection of distributions and the associated weights.
distributions = [
    ot.Triangular(1.0, 2.0, 4.0),
    ot.Normal(-1.0, 1.0),
    ot.Uniform(5.0, 6.0),
]
weights = [0.4, 1.0, 0.2]

# %%
# We create the mixture.
distribution = ot.Mixture(distributions, weights)
print(distribution)

# %%
# We can draw the probability density function.
graph = distribution.drawPDF()
graph.setTitle("Mixture of Triangular, Normal, Uniform")
graph.setXTitle("x")
graph.setLegendPosition("")
view = otv.View(graph)

# %%
# We can draw the cumulative distribution function.
graph = distribution.drawCDF()
graph.setTitle("Mixture of Triangular, Normal, Uniform")
graph.setXTitle("x")
graph.setLegendPosition("")
view = otv.View(graph)

# %%
# Case 1b: Mixture of copulas
# ---------------------------
# In this case, we build the mixture of the following copulas:
#
# - a :class:`~openturns.GumbelCopula`,
# - a :class:`~openturns.ClaytonCopula`.

# %%
# We define the collection of copulas and the associated weights.
copulas = [ot.GumbelCopula(4.5), ot.ClaytonCopula(2.3)]
weights = [0.2, 0.8]

# %%
# We create a mixture of copulas.
distribution = ot.Mixture(copulas, weights)
print(distribution)

# %%
# We can draw the probability density function.
graph = distribution.drawPDF()
graph.setTitle("Mixture of Gumbel copula, Clayton copula")
graph.setXTitle(r"$x_0$")
graph.setYTitle(r"$x_1$")
graph.setLegendPosition("")
view = otv.View(graph)

# %%
# We can draw the cumulative distribution function.
graph = distribution.drawCDF()
graph.setTitle("Mixture of Gumbel copula, Clayton copula")
graph.setXTitle(r"$x_0$")
graph.setYTitle(r"$x_1$")
view = otv.View(graph)


# %%
# Case 1c: Mixture of a Histogram and a Generalized Pareto Distribution
# ---------------------------------------------------------------------
# We want to create the scalar distribution of :math:`X` such that:
#
# .. math::
#    X|X \leq x_0 & \sim \mathcal{L}_1 \\
#    X|X \geq x_0 & \sim \mathcal{L}_2
#
# where:
#
# - :math:`\mathcal{L}_1` is a Histogram,
# - :math:`\mathcal{L}_2` is a Generalized Pareto distribution (GPD),
# - :math:`x_0` is a quantile of high level of :math:`X`.
#
# Let us define:
#
# .. math::
#    w = \Prob{X \leq x_0}
#
# We assume that we only have a sample from :math:`X`.

# %%
# In this example, we consider a Normal distribution with zero mean and unit variance.
# We generate a sample of size :math:`n`.
n = 5000
X_dist = ot.Normal()
sample_X = X_dist.getSample(n)

# %%
# We build the whole histogram from the sample.
hist_dist = ot.HistogramFactory().build(sample_X)
g_hist = hist_dist.drawPDF()
g_hist.setTitle(r"Empirical distribution of $X$")
g_hist.setXTitle("x")
g_hist.setYTitle("pdf")
g_hist.setLegends(["histogram"])
view = otv.View(g_hist)

# %%
# We estimate the extreme empirical quantile of level 0.95.
w = 0.95
x0 = hist_dist.computeQuantile(w)[0]

# %%
# We start by truncating the initial histogram on the interval :math:`]-\infty, x_0]`.
# We visualize it!
hist_trunc = ot.TruncatedDistribution(hist_dist, x0, ot.TruncatedDistribution.UPPER)
g_hist_trunc = hist_trunc.drawPDF()
g_hist_trunc.setTitle(r"Empirical distribution of $X|X \leq $" + "%.3g" % (x0))
g_hist_trunc.setXTitle("x")
g_hist_trunc.setYTitle("pdf")
g_hist_trunc.setLegends(["truncated histogram"])
view = otv.View(g_hist_trunc)

# %%
# Then we model :math:`X|X \geq x_0` by a Generalized Pareto distribution (GPD). We start by
# extracting from the sample all the values greater than :math:`x_0` to build the upper
# sample. We get about :math:`n(1-w)` points.
sample_X_upper = ot.Sample(0, 1)
for i in range(len(sample_X)):
    if sample_X[i, 0] > x0:
        sample_X_upper.add(sample_X[i])

print("Excess number = ", sample_X_upper.getSize())
print("n(1-w) = ", int(n * (1 - w)))

# %%
# Then we fit a GPD parameterized by :math:`(\sigma, \xi, x_0)`: the
# threshold is fixed to :math:`x_0`.
# We use the estimator that maximizes the likelihood.
# To solve the optimisation problem faster, we start by estimating the 3 parameters
# :math:`(\sigma, \xi, u)` from the upper sample. Then we fix the threshold to :math:`u = x_0`
# and we estimate the remaining parameters :math:`(\sigma, \xi)` using the previous values of
# :math:`(\sigma, \xi)` as a starting point to the optimization problem.
# We visualize the pdf of the GPD.
gpd_first = ot.GeneralizedParetoFactory().build(sample_X_upper)
mlFact = ot.MaximumLikelihoodFactory(gpd_first)

# we fix the threshold to :math:`x_0`.
mlFact.setKnownParameter([2], [x0])
gpd_estimated = mlFact.build(sample_X_upper)
print("estimated gpd = ", gpd_estimated)

g_gpd = gpd_estimated.drawPDF()
g_gpd.setTitle(r"Distribution of $X|X \geq $" + "%.3g" % (x0))
g_gpd.setXTitle("x")
g_gpd.setYTitle("pdf")
g_gpd.setLegends(["GPd"])
view = otv.View(g_gpd)

# %%
# Then we can create the mixture using the truncated Histogram distribution below :math:`x_0`
# and the GPD over :math:`x_0` weighted by :math:`w` and :math:`(1-w)`.
mixt_dist = ot.Mixture([hist_trunc, gpd_estimated], [w, 1 - w])
g_hist.add(mixt_dist.drawPDF())

ord_Max = max(hist_dist.getImplementation().getHeight())
line = ot.Curve([x0, x0], [0.0, ord_Max])
line.setColor("red")
line.setLineStyle("dashed")
g_hist.add(line)

draw_ref = X_dist.drawPDF().getDrawable(0)
draw_ref.setLineStyle("dashed")
g_hist.add(draw_ref)

g_hist.setLegends(["histogram", "mixture", "", "exact dist"])
g_hist.setTitle(r"Distribution of $X$: Mixture")

view = otv.View(g_hist)

# We draw here only the mixture distribution to make the comparison easier.
g_mixt = mixt_dist.drawPDF()
g_mixt.setTitle(r"Mixture distribution of $X$")
g_mixt.setXTitle("x")
g_mixt.setYTitle("pdf")
g_mixt.setLegendPosition("")
view = otv.View(g_mixt)


# %%
# Case 2: Mixture of discrete distributions
# -----------------------------------------
# In this case, we build the mixture of the following distributions:
#
# - a :class:`~openturns.Poisson`,
# - a :class:`~openturns.Geometric`.
#
# The weigths are automatically normalized.

# %%
# We define the collection of distributions and the associated weights.
distributions = [ot.Poisson(1.2), ot.Geometric(0.7)]
weights = [0.4, 1.0]

# %%
# We create the mixture.
distribution = ot.Mixture(distributions, weights)
print(distribution)

# %%
# We can draw the probability distribution function.
graph = distribution.drawPDF()
graph.setTitle("Mixture of Poisson, Geometric")
graph.setXTitle("x")
graph.setLegendPosition("")
view = otv.View(graph)

# %%
# We can draw the cumulative distribution function.
graph = distribution.drawCDF()
graph.setTitle("Mixture of Poisson, Geometric")
graph.setXTitle("x")
graph.setLegendPosition("")
view = otv.View(graph)


# %%
# Case Case 3: Mixture of discrete and continuous distributions
# -------------------------------------------------------------
# In this case, we build the mixture of the following distributions:
#
# - a :class:`~openturns.Normal`,
# - a :class:`~openturns.Poisson`.
#
# The resulting distribution is not continuous nor discrete. It not possible to
# draw the pdf...

# %%
# We define the collection of distributions and the associated weights.
distributions = [ot.Normal(), ot.Poisson(0.7)]
weights = [0.4, 1.0]

# %%
# We create the mixture.
distribution = ot.Mixture(distributions, weights)
print(distribution)

# %%
# We cannot draw the probability distribution function as it is not defined.
# But, we can draw the cumulative distribution function.
graph = distribution.drawCDF()
graph.setTitle("Mixture of Normal, Poisson")
graph.setXTitle("x")
graph.setLegendPosition("")
view = otv.View(graph)

# %%
# Show all the graphs.
otv.View.ShowAll()