1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
"""
Evaluate the mean of a random vector by simulations
===================================================
"""
# %%
# Abstract
# --------
# We introduce the :class:`~openturns.ExpectationSimulationAlgorithm` class which implements
# an incremental Monte Carlo sampling algorithm to estimate the mean of a random vector.
import openturns as ot
import openturns.viewer as otv
# %%
# We shall use this algorithm for the :ref:`Ishigami function <use-case-ishigami>` that we load from the `usecases` module :
#
from openturns.usecases import ishigami_function
im = ishigami_function.IshigamiModel()
# %%
# The Ishigami `model` and the distribution of the input variables are stored in
# the `im` object :
model = im.model
distribution = im.distribution
# %%
# We create a random vector that follows the distribution of the input variables.
inputVector = ot.RandomVector(distribution)
# %%
# The output vector is a :class:`~openturns.CompositeRandomVector`.
outputVector = ot.CompositeRandomVector(model, inputVector)
# %%
# The mean of the output vector is
print("Mean of the output random vector : %.5f" % im.expectation)
# %%
# We define the algorithm simply by calling it with the output vector :
algo = ot.ExpectationSimulationAlgorithm(outputVector)
# %%
# We can also set the algorithm parameters :
algo.setMaximumOuterSampling(80000)
algo.setBlockSize(1)
algo.setCoefficientOfVariationCriterionType("NONE")
# %%
# We are then ready to launch the algorithm and store the result.
algo.run()
result = algo.getResult()
# %%
# As usual for Monte Carlo estimation we can draw the convergence history.
graphConvergence = algo.drawExpectationConvergence()
view = otv.View(graphConvergence)
# %%
# The result obtained with the previous algorithm is an instance of the
# :class:`~openturns.ExpectationSimulationResult` class.
# %%
# The expected value of the mean is given by the `getExpectationEstimate` method :
expectation = result.getExpectationEstimate()
print("Estimated mean of the output random vector : %.5f" % expectation[0])
# %%
# The variance and standard deviation of the estimated mean are respectively given by `getVarianceEstimate` and `getStandardDeviation`:
expectationVariance = result.getVarianceEstimate()
print(
"Variance of the estimated mean of the output random vector : %.5f"
% expectationVariance[0]
)
standardDeviation = result.getStandardDeviation()
print("Standard deviation : %.5f" % standardDeviation[0])
# %%
# This variance and this standard deviation must not to be confused with the variance and the standard deviation of the Ishigami model!
print("Ishigami variance : %.5f" % im.variance)
print("Ishigami standard deviation : %.5f" % im.variance ** (1 / 2))
# %%
# The asymptotic confidence distribution of the output random vector mean estimate is
expectationDistribution = result.getExpectationDistribution()
print(expectationDistribution)
# %%
# Let us draw it:
graphExpectationDistribution = expectationDistribution.drawPDF()
graphExpectationDistribution.setTitle(
"Normal asymptotic distribution of the mean estimate"
)
view = otv.View(graphExpectationDistribution)
# %%
# Display all figures
otv.View.ShowAll()
|