1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
"""
Axial stressed beam : comparing different methods to estimate a probability
===========================================================================
"""
# %%
# In this example, we compare four methods to estimate the probability in the :ref:`axial stressed beam <use-case-stressed-beam>` example :
#
# * Monte-Carlo simulation,
# * FORM,
# * directional sampling,
# * importance sampling with FORM design point: FORM-IS.
#
# %%
# Define the model
# ----------------
# %%
import numpy as np
from openturns.usecases import stressed_beam
import openturns as ot
import openturns.viewer as otv
# %%
# We load the model from the usecases module :
sm = stressed_beam.AxialStressedBeam()
# %%
# The limit state function is defined in the `model` field of the data class :
limitStateFunction = sm.model
# %%
# The probabilistic model of the axial stressed beam is defined in the data class.
# We get the first marginal and draw it :
R_dist = sm.distribution_R
graph = R_dist.drawPDF()
view = otv.View(graph)
# %%
# We get the second marginal and draw it :
# %%
F_dist = sm.distribution_F
graph = F_dist.drawPDF()
view = otv.View(graph)
# %%
# These independent marginals define the joint distribution of the input parameters :
myDistribution = sm.distribution
# %%
# We create a `RandomVector` from the `Distribution`, then a composite random vector. Finally, we create a `ThresholdEvent` from this `RandomVector`.
# %%
inputRandomVector = ot.RandomVector(myDistribution)
outputRandomVector = ot.CompositeRandomVector(limitStateFunction, inputRandomVector)
myEvent = ot.ThresholdEvent(outputRandomVector, ot.Less(), 0.0)
# %%
# Using Monte Carlo simulations
# -----------------------------
# %%
cv = 0.05
NbSim = 100000
experiment = ot.MonteCarloExperiment()
algoMC = ot.ProbabilitySimulationAlgorithm(myEvent, experiment)
algoMC.setMaximumOuterSampling(NbSim)
algoMC.setBlockSize(1)
algoMC.setMaximumCoefficientOfVariation(cv)
# %%
# For statistics about the algorithm
initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber()
# %%
# Perform the analysis.
# %%
algoMC.run()
# %%
result = algoMC.getResult()
probabilityMonteCarlo = result.getProbabilityEstimate()
numberOfFunctionEvaluationsMonteCarlo = (
limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall
)
print("Number of calls to the limit state =", numberOfFunctionEvaluationsMonteCarlo)
print("Pf = ", probabilityMonteCarlo)
print("CV =", result.getCoefficientOfVariation())
# %%
graph = algoMC.drawProbabilityConvergence()
graph.setLogScale(ot.GraphImplementation.LOGX)
view = otv.View(graph)
# %%
# Using LHS simulation
# --------------------
experiment = ot.LHSExperiment()
experiment.setAlwaysShuffle(True)
algo = ot.ProbabilitySimulationAlgorithm(myEvent, experiment)
algo.setMaximumOuterSampling(NbSim)
algo.setBlockSize(1)
algo.setMaximumCoefficientOfVariation(cv)
# %%
# For statistics about the algorithm
initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber()
# %%
# Perform the analysis.
# %%
algo.run()
# %%
resultLHS = algo.getResult()
numberOfFunctionEvaluationsLHS = (
limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall
)
probabilityLHS = result.getProbabilityEstimate()
print("Number of calls to the limit state =", numberOfFunctionEvaluationsLHS)
print("Pf = ", probabilityLHS)
print("CV =", result.getCoefficientOfVariation())
# %%
graph = algo.drawProbabilityConvergence()
graph.setLogScale(ot.GraphImplementation.LOGX)
view = otv.View(graph)
# %%
# Using FORM analysis
# -------------------
# %%
# We create a NearestPoint algorithm
algoOptim = ot.AbdoRackwitz()
# Resolution options:
eps = 1e-3
algoOptim.setStartingPoint(myDistribution.getMean())
algoOptim.setMaximumCallsNumber(1000)
algoOptim.setMaximumAbsoluteError(eps)
algoOptim.setMaximumRelativeError(eps)
algoOptim.setMaximumResidualError(eps)
algoOptim.setMaximumConstraintError(eps)
# %%
# For statistics about the algorithm
initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber()
# %%
# We create a FORM algorithm. The first parameter is a NearestPointAlgorithm. The second parameter is an event.
algoFORM = ot.FORM(algoOptim, myEvent)
# %%
# Perform the analysis.
algoFORM.run()
# %%
resultFORM = algoFORM.getResult()
numberOfFunctionEvaluationsFORM = (
limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall
)
probabilityFORM = resultFORM.getEventProbability()
print("Number of calls to the limit state =", numberOfFunctionEvaluationsFORM)
print("Pf =", probabilityFORM)
# %%
graph = resultFORM.drawImportanceFactors()
view = otv.View(graph)
# %%
# Using Directional sampling
# --------------------------
# %%
# Resolution options:
cv = 0.05
NbSim = 10000
algoDS = ot.DirectionalSampling(myEvent)
algoDS.setMaximumOuterSampling(NbSim)
algoDS.setBlockSize(1)
algoDS.setMaximumCoefficientOfVariation(cv)
# %%
# For statistics about the algorithm
initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber()
# %%
# Perform the analysis.
# %%
algoDS.run()
# %%
result = algoDS.getResult()
probabilityDirectionalSampling = result.getProbabilityEstimate()
numberOfFunctionEvaluationsDirectionalSampling = (
limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall
)
print(
"Number of calls to the limit state =",
numberOfFunctionEvaluationsDirectionalSampling,
)
print("Pf = ", probabilityDirectionalSampling)
print("CV =", result.getCoefficientOfVariation())
# %%
graph = algoDS.drawProbabilityConvergence()
graph.setLogScale(ot.GraphImplementation.LOGX)
view = otv.View(graph)
# %%
# Using importance sampling with FORM design point: FORM-IS
# ---------------------------------------------------------
# %%
# The `getStandardSpaceDesignPoint` method returns the design point in the U-space.
# %%
standardSpaceDesignPoint = resultFORM.getStandardSpaceDesignPoint()
standardSpaceDesignPoint
# %%
# The key point is to define the importance distribution in the U-space.
# To define it, we use a multivariate standard Gaussian and configure it so that the center is equal to the design point in the U-space.
# %%
dimension = myDistribution.getDimension()
dimension
# %%
myImportance = ot.Normal(dimension)
myImportance.setMu(standardSpaceDesignPoint)
myImportance
# %%
# Create the design of experiment corresponding to importance sampling. This generates a `WeightedExperiment` with weights corresponding to the importance distribution.
# %%
experiment = ot.ImportanceSamplingExperiment(myImportance)
# %%
# Create the standard event corresponding to the event. This transforms the original problem into the U-space, with Gaussian independent marginals.
# %%
standardEvent = ot.StandardEvent(myEvent)
# %%
# We then create the simulation algorithm.
# %%
algo = ot.ProbabilitySimulationAlgorithm(standardEvent, experiment)
algo.setMaximumCoefficientOfVariation(cv)
algo.setMaximumOuterSampling(40000)
# %%
# For statistics about the algorithm
initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber()
# %%
algo.run()
# %%
# retrieve results
result = algo.getResult()
probabilityFORMIS = result.getProbabilityEstimate()
numberOfFunctionEvaluationsFORMIS = (
limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall
)
print("Number of calls to the limit state =", numberOfFunctionEvaluationsFORMIS)
print("Pf = ", probabilityFORMIS)
print("CV =", result.getCoefficientOfVariation())
# %%
# Conclusion
# ----------
# %%
# We now compare the different methods in terms of accuracy and speed.
# %%
# %%
# The following function computes the number of correct base-10 digits in the computed result compared to the exact result.
# %%
def computeLogRelativeError(exact, computed):
logRelativeError = -np.log10(abs(exact - computed) / abs(exact))
return logRelativeError
# %%
# The following function prints the results.
# %%
def printMethodSummary(name, computedProbability, numberOfFunctionEvaluations):
print("---")
print(name, ":")
print("Number of calls to the limit state =", numberOfFunctionEvaluations)
print("Pf = ", computedProbability)
exactProbability = 0.02919819462483051
logRelativeError = computeLogRelativeError(exactProbability, computedProbability)
print("Number of correct digits=%.3f" % (logRelativeError))
performance = logRelativeError / numberOfFunctionEvaluations
print("Performance=%.2e (correct digits/evaluation)" % (performance))
return
# %%
printMethodSummary(
"Monte-Carlo", probabilityMonteCarlo, numberOfFunctionEvaluationsMonteCarlo
)
printMethodSummary("LHS", probabilityLHS, numberOfFunctionEvaluationsLHS)
printMethodSummary("FORM", probabilityFORM, numberOfFunctionEvaluationsFORM)
printMethodSummary(
"DirectionalSampling",
probabilityDirectionalSampling,
numberOfFunctionEvaluationsDirectionalSampling,
)
printMethodSummary("FORM-IS", probabilityFORMIS, numberOfFunctionEvaluationsFORMIS)
# %%
# We see that all three methods produce the correct probability, but not with the same accuracy.
# In this case, we have found the correct order of magnitude of the probability, i.e. between one and two correct digits.
# There is, however, a significant difference in computational performance (measured here by the number of function evaluations).
#
# * The fastest method is the FORM method, which produces more than 1 correct
# digit with less than 98 function evaluations with a performance equal to :math:`1.60 \times 10^{-2}` (correct digits/evaluation).
# A practical limitation is that the FORM method does not produce a confidence interval: there is no guarantee that the computed probability is correct.
# * The slowest method is Monte-Carlo simulation, which produces more than 1 correct digit with 12806 function evaluations.
# This is associated with a very slow performance equal to :math:`1.11 \times 10^{-4}` (correct digits/evaluation).
# The interesting point with the Monte-Carlo simulation is that the method produces a confidence interval.
# * The DirectionalSampling method is somewhat in-between the two previous methods.
# * The FORM-IS method produces 2 correct digits and has a small number of function evaluations.i
# It has an intermediate performance equal to :math:`2.37\times 10^{-3}` (correct digits/evaluation).
# It combines the best of the both worlds: it has the small number of function evaluation of FORM computation and the confidence interval of Monte-Carlo simulation.
# %%
# Display all figures
otv.View.ShowAll()
|