File: plot_axial_stressed_beam_quickstart.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (239 lines) | stat: -rw-r--r-- 6,814 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Estimate a probability with Monte-Carlo on axial stressed beam: a quick start guide to reliability
==================================================================================================
"""

# %%
#
# The goal of this example is to show a simple practical example of
# probability estimation in a reliability study with the `ProbabilitySimulationAlgorithm` class.
# The `ThresholdEvent` is used to define the event. We use the Monte-Carlo
# method thanks to the `MonteCarloExperiment` class to estimate this probability and its confidence interval.
# We use the :ref:`axial stressed beam <use-case-stressed-beam>` model as an illustrative example.


# %%
# Definition of the model
# -----------------------

# %%
from openturns.usecases import stressed_beam
import openturns as ot
import numpy as np
import openturns.viewer as otv


# %%
# We load the model from the usecases module :
sm = stressed_beam.AxialStressedBeam()

# %%
# The limit state function is defined as a symbolic function in the `model` parameter of the `AxialStressedBeam` data class:
limitStateFunction = sm.model

# %%
# Before using the function within an algorithm, we check that the limit state function is correctly evaluated.

# %%
x = [3.0e6, 750.0]
print("x=", x)
print("G(x)=", limitStateFunction(x))

# %%
# Probabilistic model
# -------------------

# %%
# We load the first marginal, a univariate `LogNormal` distribution, parameterized by its mean and standard deviation:
R = sm.distribution_R

# %%
# We draw the PDF of the first marginal.
graph = R.drawPDF()
view = otv.View(graph)

# %%
# Our second marginal is a `Normal` univariate distribution:
F = sm.distribution_F

# %%
# We draw the PDF of the second marginal.
graph = F.drawPDF()
view = otv.View(graph)

# %%
# In order to create the input distribution, we use the `JointDistribution` class which associates
# the distribution marginals and a copula.
# If no copula is supplied to the constructor, it selects the independent copula as default.
# That is implemented in the data class:

# %%
myDistribution = sm.distribution

# %%
# We create a `RandomVector` from the `Distribution`, which will then be fed to the limit state function.

# %%
inputRandomVector = ot.RandomVector(myDistribution)

# %%
# Finally we create a `CompositeRandomVector` by associating the limit state function with the input random vector.

# %%
outputRandomVector = ot.CompositeRandomVector(limitStateFunction, inputRandomVector)

# %%
# Exact computation
# -----------------

# %%
# The simplest method is to perform an exact computation based on the arithmetic of distributions.

# %%
D = 0.02

# %%
G = R - F / (D**2 / 4 * np.pi)

# %%
G.computeCDF(0.0)

# %%
# This is the exact result from the description of this example.

# %%
# Distribution of the output
# --------------------------

# %%
# Plot the distribution of the output.

# %%
sampleSize = 500
sampleG = outputRandomVector.getSample(sampleSize)
graph = ot.HistogramFactory().build(sampleG).drawPDF()
view = otv.View(graph)

# %%
# Estimate the probability with Monte-Carlo
# -----------------------------------------

# %%
# We first create a `ThresholdEvent` based on the output `RandomVector`, the operator and the threshold.

# %%
myEvent = ot.ThresholdEvent(outputRandomVector, ot.Less(), 0.0)

# %%
# The `ProbabilitySimulationAlgorithm` is the main tool to estimate a probability.
# It is based on a specific design of experiments: in this example, we use the simplest of all, the `MonteCarloExperiment`.

# %%
maximumCoV = 0.05  # Coefficient of variation
maximumNumberOfBlocks = 100000

experiment = ot.MonteCarloExperiment()
algoMC = ot.ProbabilitySimulationAlgorithm(myEvent, experiment)
algoMC.setMaximumOuterSampling(maximumNumberOfBlocks)
algoMC.setBlockSize(1)
algoMC.setMaximumCoefficientOfVariation(maximumCoV)

# %%
# In order to gather statistics about the algorithm, we get the initial number of function calls
# (this is not mandatory, but will prove to be convenient later in the study).

# %%
initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber()

# %%
# Now comes the costly part: the `run` method performs the required simulations.
# The algorithm stops when the coefficient of variation of the probability estimate becomes lower than 0.5.

# %%
algoMC.run()

# %%
# We can then get the results of the algorithm.

# %%
result = algoMC.getResult()
probability = result.getProbabilityEstimate()
numberOfFunctionEvaluations = (
    limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall
)
print("Number of calls to the limit state =", numberOfFunctionEvaluations)
print("Pf = ", probability)
print("CV =", result.getCoefficientOfVariation())

# %%
# The `drawProbabilityConvergence` method plots the probability estimate depending on the number of function evaluations.
# The order of convergence is :math:`O \left( 1/N^2 \right)` with :math:`N` being the number of function evaluations.
# This is why we use a logarithmic scale for the X axis of the graphics.

# %%
graph = algoMC.drawProbabilityConvergence()
graph.setLogScale(ot.GraphImplementation.LOGX)
view = otv.View(graph)

# %%
# We see that the 95% confidence interval becomes smaller and smaller and stabilizes at the end of the simulation.
#
# In order to compute the confidence interval, we use the `getConfidenceLength` method, which returns the length of the interval.
# In order to compute the bounds of the interval, we divide this length by 2.

# %%
alpha = 0.05

# %%
pflen = result.getConfidenceLength(1 - alpha)
print(
    "%.2f%% confidence interval = [%f,%f]"
    % ((1 - alpha) * 100, probability - pflen / 2, probability + pflen / 2)
)

# %%
# This interval is consistent with the exact probability :math:`P_f=0.02920`.

# %%
# Appendix: derivation of the failure probability
# -----------------------------------------------
#
# The failure probability is:
#
# .. math::
#    P_f = \text{Prob}(R-S \leq 0) = \int_{r-s \leq 0} f_{R, S}(r, s)drds
#
#
# where :math:`f_{R, S}` is the probability distribution function of the random vector :math:`(R,S)`.
# If R and S are independent, then:
#
# .. math::
#    f_{R, S}(r, s) = f_R(r) f_S(s)
#
#
# for any :math:`r,s\in\mathbb{R}`,
# where :math:`f_S` is the probability distribution function of the random
# variable :math:`S` and :math:`f_R` is the probability distribution function of the random variable :math:`R`.
# Therefore,
#
# .. math::
#    P_f = \int_{r-s \leq 0} f_R(r) f_S(s) drds.
#
#
# This implies:
#
# .. math::
#    P_f = \int_{-\infty}^{+\infty} \left(\int_{r \leq s} f_R(r) dr \right) f_S(s) ds.
#
# Therefore,
#
# .. math::
#    P_f = \int_{-\infty}^{+\infty}f_S(s)F_R(s)ds
#
#
# where :math:`F_R` is the cumulative distribution function of the random variable :math:`R`.
#

# %%
# Display all figures
otv.View.ShowAll()