1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
"""
Create a domain event
=====================
"""
# %%
# Abstract
# --------
#
# We present in this example the creation and the use of a :class:`~openturns.DomainEvent` through a
# simple Monte-Carlo estimator.
#
import openturns as ot
import openturns.viewer as otv
# %%
# We consider a standard unit Gaussian bivariate random vector :math:`\vect{X} = (X_1,X_2)` with
# independent marginals.
dim = 2
distX = ot.Normal(dim)
# %%
# We define a model :math:`f` which maps a vector of :math:`\mathbb{R}^2` to another vector of :math:`\mathbb{R}^2`
#
# .. math::
#
# f : (x_1, x_2) \mapsto (x_1 + x_2, 2x_1)
#
#
f = ot.SymbolicFunction(["x1", "x2"], ["x1+x2", "2*x1"])
# %%
# We build a :class:`~openturns.RandomVector` out of the input distribution and
# a :class:`~openturns.CompositeRandomVector` by using the model.
vecX = ot.RandomVector(distX)
vecY = ot.CompositeRandomVector(f, vecX)
# %%
# Definition and vizualisation of a domain event
# ----------------------------------------------
#
# %%
# We define for each marginals of the output random vector `vecY` a domain of interest, say :math:`[0,1] \times [0,1]`
domain = ot.Interval([0.0, 0.0], [1.0, 1.0])
# %%
# The :class:`~openturns.DomainEvent` is then built from the output random vector `vecY` and the `domain` :
event = ot.DomainEvent(vecY, domain)
# %%
# This domain is
#
# .. math::
#
# \mathcal{D} = \{ \vect{x}=(x_1, x_2) \in \mathbb{R}^2 \; | \; x_1+x_2 \in [0,1] \; \mathrm{and} \; 2x_1 \in [0,1] \}.
#
#
# %%
# We plot both marginals of the model and the domain of interest for each marginal using contour curves.
#
# %%
# We represent the first marginal of `vecY`.
ot.ResourceMap.SetAsUnsignedInteger("Contour-DefaultLevelsNumber", 7)
graphModel0 = f.draw(0, 1, 0, [0.0, 0.0], [-5.0, -5.0], [5.0, 5.0])
graphModel0.setXTitle(r"$x_1$")
graphModel0.setYTitle(r"$x_2$")
graphModel0.setTitle(r"Isolines of the model : $Y = f(X)$, first marginal")
# %%
# We represent the second marginal of `vecY`.
graphModel1 = f.draw(0, 1, 1, [0.0, 0.0], [-5.0, -5.0], [5.0, 5.0])
graphModel1.setXTitle(r"$x_1$")
graphModel1.setYTitle(r"$x_2$")
graphModel1.setTitle(r"Isolines of the model : $Y = f(X)$, second marginal")
# %%
# We shall now represent the curves delimiting the domain of interest :
#
nx, ny = 15, 15
xx = ot.Box([nx], ot.Interval([-5.0], [5.0])).generate()
yy = ot.Box([ny], ot.Interval([-5.0], [5.0])).generate()
inputData = ot.Box([nx, ny], ot.Interval([-5.0, -5.0], [5.0, 5.0])).generate()
outputData = f(inputData)
# %%
# The contour line associated with the 0.0 value for the first marginal.
mycontour0 = ot.Contour(xx, yy, outputData.getMarginal(0))
mycontour0.setLevels([0.0])
mycontour0.setLabels(["0.0"])
mycontour0.setColor("black")
mycontour0.setLineStyle("dashed")
graphModel0.add(mycontour0)
# %%
# The contour line associated with the 1.0 value for the first marginal.
mycontour1 = ot.Contour(xx, yy, outputData.getMarginal(0))
mycontour1.setLevels([1.0])
mycontour1.setLabels(["1.0"])
mycontour1.setColor("black")
mycontour1.setLineStyle("dashed")
graphModel0.add(mycontour1)
view = otv.View(graphModel0)
# %%
# The contour line associated with the 0.0 value for the second marginal.
mycontour2 = ot.Contour(xx, yy, outputData.getMarginal(1))
mycontour2.setLevels([0.0])
mycontour2.setLabels(["0.0"])
mycontour2.setColor("black")
mycontour2.setLineStyle("dashed")
graphModel1.add(mycontour2)
# %%
# The contour line associated with the 1.0 value for the second marginal.
mycontour3 = ot.Contour(xx, yy, outputData.getMarginal(1))
mycontour3.setLevels([1.0])
mycontour3.setLabels(["1.0"])
mycontour3.setColor("black")
mycontour3.setLineStyle("dashed")
graphModel1.add(mycontour3)
view = otv.View(graphModel1)
# %%
# For each marginal the domain of interest is the area between the two black dashed curves.
# The domain event :math:`\mathcal{D}` is the intersection of these two areas.
# Here the intersection of both events is a parallelogram with the following
# vertices :
data = [[0.0, 0.0], [0.5, -0.5], [0.5, 0.5], [0.0, 1.0], [0.0, 0.0]]
# %%
# We create a polygon from these vertices with the :class:`~openturns.Polygon`
# class : that is our domain event.
myGraph = ot.Graph("Domain event", r"$x_1$", r"$x_2$", True)
myPolygon = ot.Polygon(data)
myPolygon.setColor("darkgray")
myPolygon.setEdgeColor("darkgray")
myGraph.add(myPolygon)
# Some annotation
texts = [
r"$\mathcal{D} = \{ \mathbf{x}=(x_1, x_2) \in \mathbb{R}^2 \; | \; x_1+x_2 \in [0,1] \; \mathrm{and} \; 2x_1 \in [0,1] \}$"
]
myText = ot.Text([0.25], [0.0], texts)
myText.setTextSize(1)
myText.setColor("black")
myGraph.add(myText)
view = otv.View(myGraph)
# %%
# An example
# ----------
#
# Consider the integral
#
# .. math::
#
# P_f = \int_{\mathcal{D}} \mathbf{1}_{\mathcal{D}}(\vect{x}) f_{X_1,X_2}(\vect{x}) d \vect{x}
#
# where :math:`{\mathcal{D}}` is the previous domain event, :math:`\mathbf{1}_{\mathcal{D}}` is the indicator function on the domain
# and :math:`f_{X_1,X_2}` is the probability density function of the input variable.
# %%
# We observe the integration domain :math:`{\mathcal{D}}` superimposed on the 2D-PDF.
graphPDF = distX.drawPDF([-5.0, -5.0], [5.0, 5.0])
graphPDF.setXTitle(r"$x_1$")
graphPDF.setYTitle(r"$x_2$")
graphPDF.setTitle(r"Isolines of the 2D-PDF")
graphPDF.add(myPolygon)
view = otv.View(graphPDF, contour_kw={"norm": "log"})
# %%
# We shall use a basic Monte Carlo algorithm using the domain event to estimate the probability.
#
algoMC = ot.ProbabilitySimulationAlgorithm(event)
algoMC.setMaximumOuterSampling(1000)
algoMC.setBlockSize(100)
algoMC.setMaximumCoefficientOfVariation(0.02)
algoMC.run()
print("Pf = %.4f" % algoMC.getResult().getProbabilityEstimate())
# %%
# We draw the convergence history :
graphConvergence = algoMC.drawProbabilityConvergence()
view = otv.View(graphConvergence)
# %%
# We can use the :meth:`~openturns.DomainEvent.getSample` method of the event to estimate the probability :math:`P_f`.
# This method draws realizations of the underlying random input vector `vecX` and returns `True` if the corresponding output random vector is in the domain event.
# Then the ratio between the number of realizations in the domain and the total of realizations is a rough estimate
# of the probability :math:`P_f` which we compare with the previous Monte-Carlo estimator.
N = 30000
samples = event.getSample(N)
print("Basic estimator : %.4f" % (sum(samples)[0] / N))
# %%
# Display all figures
otv.View.ShowAll()
|