File: plot_estimate_probability_directional_sampling.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (94 lines) | stat: -rw-r--r-- 2,326 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""
Use the Directional Sampling Algorithm
======================================
"""

# %%
# In this example we estimate a failure probability with the directional simulation algorithm provided by the :class:`~openturns.DirectionalSampling` class.

# %%
# Introduction
# ------------
#
# The directional simulation algorithm  operates in the standard space based on:
#
# 1. a *root strategy* to evaluate the nearest failure point along each direction and take the contribution of each direction to the failure event probability into account.
#    The available strategies are:
#    - `RiskyAndFast`
#    - `MediumSafe`
#    - `SafeAndSlow`
#
# 2. a *sampling strategy* to choose directions in the standard space. The available strategies are:
#    - `RandomDirection`
#    - `OrthogonalDirection`
#
# Let us consider the analytical example of the cantilever beam described :ref:`here <use-case-cantilever-beam>`.
#

# %%
from openturns.usecases import cantilever_beam
import openturns as ot
import openturns.viewer as otv


# %%
# We load the model from the usecases module :
cb = cantilever_beam.CantileverBeam()

# %%
# We load the joint probability distribution of the input parameters :
distribution = cb.distribution

# %%
# We load the model giving the displacement at the end of the beam :
model = cb.model

# %%
# We create the event whose probability we want to estimate.

# %%
vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
event = ot.ThresholdEvent(G, ot.Greater(), 0.30)

# %%
# Root finding algorithm.

# %%
solver = ot.Brent()
rootStrategy = ot.MediumSafe(solver)

# %%
# Direction sampling algorithm.

# %%
samplingStrategy = ot.OrthogonalDirection()

# %%
# Create a simulation algorithm.

# %%
algo = ot.DirectionalSampling(event, rootStrategy, samplingStrategy)
algo.setMaximumCoefficientOfVariation(0.1)
algo.setMaximumOuterSampling(40000)
algo.setConvergenceStrategy(ot.Full())
algo.run()

# %%
# Retrieve results.

# %%
result = algo.getResult()
probability = result.getProbabilityEstimate()
print("Pf=", probability)

# %%
# We can observe the convergence history with the `drawProbabilityConvergence`
# method.
graph = algo.drawProbabilityConvergence()
graph.setLogScale(ot.GraphImplementation.LOGX)
view = otv.View(graph)

# %%
# Display all figures
otv.View.ShowAll()