File: plot_estimate_probability_form.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (194 lines) | stat: -rw-r--r-- 5,437 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
Use the FORM - SORM algorithms
==============================
"""

# %%
# In this example we estimate a failure probability with the `FORM` algorithm on the :ref:`cantilever beam <use-case-cantilever-beam>` example.
# More precisely, we show how to use the associated results:
#
# - the design point in both physical and standard space,
# - the probability estimation according to the FORM approximation, and the following SORM ones: Tvedt, Hohenbichler and Breitung,
# - the Hasofer reliability index and the generalized ones evaluated from the Breitung, Tvedt and Hohenbichler approximations,
# - the importance factors defined as the normalized director factors of the design point in the :math:`U`-space
# - the sensitivity factors of the Hasofer reliability index and the FORM probability,
# - the coordinates of the mean point in the standard event space.
#
# See :ref:`FORM <form_approximation>` and :ref:`SORM <sorm_approximation>` for theoretical details.

# %%
# Model definition
# ----------------

# %%
from openturns.usecases import cantilever_beam
import openturns as ot
import openturns.viewer as otv

# %%
# We load the model from the usecases module :
cb = cantilever_beam.CantileverBeam()

# %%
# We use the input parameters distribution from the data class :
distribution = cb.distribution
distribution.setDescription(["E", "F", "L", "I"])

# %%
# We define the model
model = cb.model

# %%
# Create the event whose probability we want to estimate.

# %%
vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
event = ot.ThresholdEvent(G, ot.Greater(), 0.3)
event.setName("deviation")

# %%
# FORM Analysis
# -------------

# %%
# Define a solver, here we use a :class:`~openturns.MultiStart` optimization based on :class:`~openturns.Cobyla`
startingSample = distribution.getSample(10)
optimAlgo = ot.MultiStart(ot.Cobyla(), startingSample)
optimAlgo.setMaximumCallsNumber(1000)
optimAlgo.setMaximumAbsoluteError(1.0e-4)
optimAlgo.setMaximumRelativeError(1.0e-4)
optimAlgo.setMaximumResidualError(1.0e-4)
optimAlgo.setMaximumConstraintError(1.0e-4)

# %%
# Run FORM
algo = ot.FORM(optimAlgo, event)
algo.run()
result = algo.getResult()

# %%
# Analysis of the results
# -----------------------

# %%
# Probability
result.getEventProbability()

# %%
# Hasofer reliability index
result.getHasoferReliabilityIndex()

# %%
# Design point in the standard U* space.

# %%
print(result.getStandardSpaceDesignPoint())

# %%
# Design point in the physical X space.

# %%
print(result.getPhysicalSpaceDesignPoint())

# %%
# Importance factors
graph = result.drawImportanceFactors()
view = otv.View(graph)

# %%
marginalSensitivity, otherSensitivity = result.drawHasoferReliabilityIndexSensitivity()
marginalSensitivity.setLegends(["E", "F", "L", "I"])
marginalSensitivity.setLegendPosition("bottom")
view = otv.View(marginalSensitivity)

# %%
marginalSensitivity, otherSensitivity = result.drawEventProbabilitySensitivity()
marginalSensitivity.setLegends(["E", "F", "L", "I"])
marginalSensitivity.setLegendPosition("bottom")
view = otv.View(marginalSensitivity)

# %%
# Error history
optimResult = result.getOptimizationResult()
graphErrors = optimResult.drawErrorHistory()
graphErrors.setLegendPosition("bottom")
graphErrors.setYMargin(0.0)
view = otv.View(graphErrors)

# %%
# Get additional results with SORM
algo = ot.SORM(optimAlgo, event)
algo.run()
sorm_result = algo.getResult()

# %%
# Reliability index with Breitung approximation
sorm_result.getGeneralisedReliabilityIndexBreitung()

# %%
# ... with Hohenbichler approximation
sorm_result.getGeneralisedReliabilityIndexHohenbichler()

# %%
# .. with Tvedt approximation
sorm_result.getGeneralisedReliabilityIndexTvedt()

# %%
# SORM probability of the event with Breitung approximation
sorm_result.getEventProbabilityBreitung()

# %%
# ... with Hohenbichler approximation
sorm_result.getEventProbabilityHohenbichler()

# %%
# ... with Tvedt approximation
sorm_result.getEventProbabilityTvedt()

# %%
# FORM analysis with finite difference gradient
# ---------------------------------------------

# %%
# When the considered function has no analytical expression, the gradient may not be known.
# In this case, a constant step finite difference gradient definition may be used.

# %%


def cantilever_beam_python(X):
    E, F, L, II = X
    return [F * L**3 / (3 * E * II)]


cbPythonFunction = ot.PythonFunction(4, 1, func=cantilever_beam_python)
epsilon = [1e-8] * 4  # Here, a constant step of 1e-8 is used for every dimension
gradStep = ot.ConstantStep(epsilon)
cbPythonFunction.setGradient(
    ot.CenteredFiniteDifferenceGradient(gradStep, cbPythonFunction.getEvaluation())
)
G = ot.CompositeRandomVector(cbPythonFunction, vect)
event = ot.ThresholdEvent(G, ot.Greater(), 0.3)
event.setName("deviation")

# %%
# However, given the different nature of the model variables, a blended (variable)
# finite difference step may be preferable:
# The step depends on the location in the input space
gradStep = ot.BlendedStep(epsilon)
cbPythonFunction.setGradient(
    ot.CenteredFiniteDifferenceGradient(gradStep, cbPythonFunction.getEvaluation())
)
G = ot.CompositeRandomVector(cbPythonFunction, vect)
event = ot.ThresholdEvent(G, ot.Greater(), 0.3)
event.setName("deviation")

# %%
# We can then run the FORM analysis in the same way as before:
algo = ot.FORM(optimAlgo, event)
algo.run()
result = algo.getResult()

# %%
otv.View.ShowAll()