File: plot_event_system.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (307 lines) | stat: -rw-r--r-- 9,432 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
Create unions or intersections of events
========================================
"""

# %%
# Abstract
# --------
#
# This example illustrates system events, which are defined as unions or intersections of other events.
# We will show how to estimate their probability both with Monte-Carlo sampling
# (using the class :class:`~openturns.ProbabilitySimulationAlgorithm`)
# and with a first order approximation (using the class :class:`~openturns.SystemFORM`).
#
import openturns as ot
import openturns.viewer as otv

# %%
# **Intersection**
#
# The event defined as the intersection of several events is realized when all sub-events occurs:
#
# .. math::
#    E_{sys} = \bigcap_{i=1}^N E_i
#
# **Union**
#
# The event defined as the union of several events is realized when at least one sub-event occurs:
#
# .. math::
#    E_{sys} = \bigcup_{i=1}^N E_i
#


# %%
# We consider a bivariate standard Gaussian random vector `X = (X_1, X_2)`.
dim = 2
distribution = ot.Normal(dim)
X = ot.RandomVector(distribution)


# %%
# We want to estimate the probability given by
#
# .. math::
#
#    P  = \mathbb{E}[\mathbf{1}_{\mathrm{Event}}(X_1, X_2)].
#
# We now build several events using intersections and unions.
#

# %%
# We consider three functions `f1`, `f2` and `f3` :
f1 = ot.SymbolicFunction(["x0", "x1"], ["x0"])
f2 = ot.SymbolicFunction(["x0", "x1"], ["x1"])
f3 = ot.SymbolicFunction(["x0", "x1"], ["x0+x1"])

# %%
# We build :class:`~openturns.CompositeRandomVector` from these functions and the initial distribution.
Y1 = ot.CompositeRandomVector(f1, X)
Y2 = ot.CompositeRandomVector(f2, X)
Y3 = ot.CompositeRandomVector(f3, X)

# %%
# We define three basic events :math:`E_1=\{(x_0,x_1)~:~x_0 < 0 \}`, :math:`E_2=\{(x_0,x_1)~:~x_1 > 0 \}` and :math:`E_3=\{(x_0,x_1)~:~x_0+x_1>0 \}`.
e1 = ot.ThresholdEvent(Y1, ot.Less(), 0.0)
e2 = ot.ThresholdEvent(Y2, ot.Greater(), 0.0)
e3 = ot.ThresholdEvent(Y3, ot.Greater(), 0.0)

# %%
# The restriction of the domain :math:`E_1` to :math:`[-4,4] \times [-4, 4]` is the grey area.
myGraph = ot.Graph(r"Representation of the event $E_1$", r"$x_1$", r"$x_2$", True, "")
data = [[-4, -4], [0, -4], [0, 4], [-4, 4]]
myPolygon = ot.Polygon(data)
myPolygon.setColor("grey")
myPolygon.setEdgeColor("black")
myGraph.add(myPolygon)
view = otv.View(myGraph)
axes = view.getAxes()
_ = axes[0].set_xlim(-4.0, 4.0)
_ = axes[0].set_ylim(-4.0, 4.0)


# %%
# The restriction of the domain :math:`E_2` to :math:`[-4,4] \times [-4, 4]` is the grey area.
myGraph = ot.Graph(r"Representation of the event $E_2$", r"$x_1$", r"$x_2$", True, "")
data = [[-4, 0], [4, 0], [4, 4], [-4, 4]]
myPolygon = ot.Polygon(data)
myPolygon.setColor("grey")
myPolygon.setEdgeColor("black")
myGraph.add(myPolygon)
view = otv.View(myGraph)
axes = view.getAxes()
_ = axes[0].set_xlim(-4.0, 4.0)
_ = axes[0].set_ylim(-4.0, 4.0)

# %%
# The restriction of the domain :math:`E_3` to :math:`[-4,4] \times [-4, 4]` is the grey area.
myGraph = ot.Graph(r"Representation of the event $E_3$", r"$x_1$", r"$x_2$", True, "")
data = [[-4, 4], [4, -4], [4, 4]]
myPolygon = ot.Polygon(data)
myPolygon.setColor("grey")
myPolygon.setEdgeColor("black")
myGraph.add(myPolygon)
view = otv.View(myGraph)
axes = view.getAxes()
_ = axes[0].set_xlim(-4.0, 4.0)
_ = axes[0].set_ylim(-4.0, 4.0)

# %%
# We can define the intersection :math:`E_4 = E_1 \bigcap E_2`: that is the upper left quadrant.
e4 = ot.IntersectionEvent([e1, e2])

# %%
# The restriction of the domain :math:`E_4` to :math:`[-4,4] \times [-4, 4]` is the grey area.
myGraph = ot.Graph(
    r"Representation of the event $E_4  = E_1 \bigcap E_2$",
    r"$x_1$",
    r"$x_2$",
    True,
    "",
)
data = [[-4, 0], [0, 0], [0, 4], [-4, 4]]
myPolygon = ot.Polygon(data)
myPolygon.setColor("grey")
myPolygon.setEdgeColor("black")
myGraph.add(myPolygon)
view = otv.View(myGraph)
axes = view.getAxes()
_ = axes[0].set_xlim(-4.0, 4.0)
_ = axes[0].set_ylim(-4.0, 4.0)

# %%
# The probability of that event is :math:`P_{E_4} = 1/4`. A basic estimator is:
print("Probability of e4 : %.4f" % e4.getSample(10000).computeMean()[0])

# %%
# We define the union :math:`E_5 = E1 \bigcup E_2`. It is the whole plan without the lower right quadrant.
e5 = ot.UnionEvent([e1, e2])

# %%
# The restriction of the domain :math:`E_5` to :math:`[-4,4] \times [-4, 4]` is the grey area.
myGraph = ot.Graph(
    r"Representation of the event $E_5  = E_1 \bigcup E_2$",
    r"$x_1$",
    r"$x_2$",
    True,
    "",
)
data = [[-4, -4], [0, -4], [0, 0], [4, 0], [4, 4], [-4, 4]]
myPolygon = ot.Polygon(data)
myPolygon.setColor("grey")
myPolygon.setEdgeColor("black")
myGraph.add(myPolygon)
view = otv.View(myGraph)
axes = view.getAxes()
_ = axes[0].set_xlim(-4.0, 4.0)
_ = axes[0].set_ylim(-4.0, 4.0)

# %%
# The probability of that event is :math:`P_{E_5} = 3/4`. A basic estimator is:
print("Probability of e5 : %.4f" % e5.getSample(10000).computeMean()[0])

# %%
# It supports recursion. Let's define :math:`E_6 = E_1 \bigcup (E_2 \bigcap E_3)`.
e6 = ot.UnionEvent([e1, ot.IntersectionEvent([e2, e3])])


# %%
# First we draw the domain :math:`E_6 = E_1 \bigcup (E_2 \bigcap E_3)` :
myGraph = ot.Graph(
    r"Representation of the event $E_2 \bigcap E_3 $", r"$x_1$", r"$x_2$", True, ""
)
data = [[-4, 4], [0, 0], [4, 0], [4, 4]]
myPolygon = ot.Polygon(data)
myPolygon.setColor("grey")
myPolygon.setEdgeColor("black")
myGraph.add(myPolygon)
view = otv.View(myGraph)
axes = view.getAxes()
_ = axes[0].set_xlim(-4.0, 4.0)
_ = axes[0].set_ylim(-4.0, 4.0)

# %%
# From the previous figures we easily deduce that the event :math:`E_6 = E_1 \bigcup (E_2 \bigcap E_3)`
# is the event :math:`E_5` and the probability is :math:`P_{E_6} = 3/4`. We can use a basic estimator and get :
print("Probability of e6 : %.4f" % e6.getSample(10000).computeMean()[0])


# %%
# Usage with a Monte-Carlo algorithm
# ----------------------------------
#
# Of course, we can use simulation algorithms with this kind of events.

# %%
# We set up a :class:`~openturns.MonteCarloExperiment` and a :class:`~openturns.ProbabilitySimulationAlgorithm` on the event :math:`E_6`.
experiment = ot.MonteCarloExperiment()
algo = ot.ProbabilitySimulationAlgorithm(e6, experiment)
algo.setMaximumOuterSampling(2500)
algo.setBlockSize(4)
algo.setMaximumCoefficientOfVariation(-1.0)
algo.run()

# %%
# We retrieve the results and display the approximate probability and a confidence interval :
result = algo.getResult()
prb = result.getProbabilityEstimate()
print("Probability of e6 through MC : %.4f" % prb)
cl = result.getConfidenceLength()
print("Confidence interval MC : [%.4f, %.4f]" % (prb - 0.5 * cl, prb + 0.5 * cl))


# %%
# Usage with SystemFORM
# ---------------------
#
# The :class:`~openturns.SystemFORM` class implements an approximation method suitable for system events.
# The event must be in its disjunctive normal form (union of intersections, or a single intersection).

# %%
# For system events, we always have to use the same root cause (input distribution). Here we use input variables with a
# normal distribution specified by its mean, standard deviation and correlation matrix.
#
dim = 5
mean = [200.0] * dim
mean[-1] = 60
mean[-2] = 60
sigma = [30.0] * dim
sigma[-1] = 15.0
R = ot.CorrelationMatrix(dim)
for i in range(dim):
    for j in range(i):
        R[i, j] = 0.5
dist = ot.Normal(mean, sigma, R)


# %%
# As usual we create a :class:`~openturns.RandomVector` out of the input distribution.
X = ot.RandomVector(dist)

# %%
# We define the leaf events thanks to :class:`~openturns.SymbolicFunction`.
inputs = ["M1", "M2", "M3", "M4", "M5"]
e0 = ot.ThresholdEvent(
    ot.CompositeRandomVector(ot.SymbolicFunction(inputs, ["M1-M2+M4"]), X),
    ot.Less(),
    0.0,
)
e1 = ot.ThresholdEvent(
    ot.CompositeRandomVector(ot.SymbolicFunction(inputs, ["M2+2*M3-M4"]), X),
    ot.Less(),
    0.0,
)
e2 = ot.ThresholdEvent(
    ot.CompositeRandomVector(ot.SymbolicFunction(inputs, ["2*M3-2*M4-M5"]), X),
    ot.Less(),
    0.0,
)
e3 = ot.ThresholdEvent(
    ot.CompositeRandomVector(ot.SymbolicFunction(inputs, ["-(M1+M2+M4+M5-5*10.0)"]), X),
    ot.Less(),
    0.0,
)
e4 = ot.ThresholdEvent(
    ot.CompositeRandomVector(ot.SymbolicFunction(inputs, ["-(M2+2*M3+M4-5*40.0)"]), X),
    ot.Less(),
    0.0,
)

# %%
# We consider a system event in disjunctive normal form (union of intersections):
event = ot.UnionEvent(
    [ot.IntersectionEvent([e0, e3, e4]), ot.IntersectionEvent([e2, e3, e4])]
)

# %%
# We can estimate the probability of the event with basic sampling.
print("Probability of the event : %.4f" % event.getSample(10000).computeMean()[0])

# %%
# We can also run a :class:`~openturns.SystemFORM` algorithm to estimate the probability differently.

# %%
# We first set up a solver to find the design point.
solver = ot.AbdoRackwitz()
solver.setMaximumIterationNumber(1000)
solver.setMaximumAbsoluteError(1.0e-3)
solver.setMaximumRelativeError(1.0e-3)
solver.setMaximumResidualError(1.0e-3)
solver.setMaximumConstraintError(1.0e-3)

# %%
# We build the :class:`~openturns.SystemFORM` algorithm from the solver, the event and a starting point (here the mean) and then run the algorithm.
solver.setStartingPoint(mean)
algo = ot.SystemFORM(solver, event)
algo.run()

# %%
# We store the result and display the probability.
result = algo.getResult()
prbSystemFORM = result.getEventProbability()
print("Probability of the event (SystemFORM) : %.4f" % prbSystemFORM)

# %%
# Display all figures
otv.View.ShowAll()