1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
r"""
An illustrated example of a FORM probability estimate
=====================================================
"""
# %%
# Abstract
# --------
#
# In this example we illustrate the different steps of a FORM/SORM analysis on a
# simple example. We focus on the different steps and compare them with an analytic
# computation whenever possible.
#
# See :ref:`FORM <form_approximation>` and :ref:`SORM <sorm_approximation>` and to get more theoretical details.
import openturns as ot
import openturns.viewer as otv
import numpy as np
# sphinx_gallery_thumbnail_number = 8
# %%
# Context
# -------
#
# We consider a bivariate random vector :math:`\inputRV = (X_1, X_2)` with the following independent components that follow:
#
# - the exponential distribution with parameter :math:`\lambda=1`, :math:`X_1 \sim \mathcal{E}(1.0)` ;
# - the standard unit normal distribution :math:`X_2 \sim \mathcal{N}(0,1)`.
#
# The support of the input vector is :math:`[0, +\infty[ \times \Rset`
dist_X1 = ot.Exponential(1.0)
dist_X2 = ot.Normal()
dist_X = ot.JointDistribution([dist_X1, dist_X2])
# %%
# We can draw the isolines of the PDF of the distribution `dist_X`:
ot.ResourceMap.SetAsUnsignedInteger("Contour-DefaultLevelsNumber", 8)
graph_PDF = dist_X.drawPDF([0.0, -10.0], [20.0, 10.0])
graph_PDF.setTitle(r"2D-PDF of the input variables $(X_1, X_2)$")
graph_PDF.setXTitle(r"$x_1$")
graph_PDF.setYTitle(r"$x_2$")
graph_PDF.setLegendPosition("lower right")
contours = graph_PDF.getDrawable(0).getImplementation()
contours.setColorMapNorm("rank")
contours.setIsFilled(True)
contours.buildDefaultLevels(50)
graph_PDF.setDrawable(0, contours)
view = otv.View(graph_PDF, square_axes=True)
# %%
# We consider the model from :math:`\Rset^2` into :math:`\Rset` defined by:
#
# .. math::
#
# \model : (x_1, x_2) \mapsto x_1 x_2
#
# We start by drawing the isolines of the model :math:`\model`.
g = ot.SymbolicFunction(["x1", "x2"], ["x1 * x2"])
graph_model = g.draw([0.0, -10.0], [20.0, 10.0])
graph_model.setXTitle(r"$x_1$")
graph_model.setYTitle(r"$x_2$")
graph_model.setTitle(r"Isolines of the model : $g$")
contours = graph_model.getDrawable(0).getImplementation()
contours.setColorMapNorm("rank")
contours.setIsFilled(True)
contours.buildDefaultLevels(50)
graph_model.setDrawable(0, contours)
view = otv.View(graph_model, square_axes=True)
# %%
# We consider the univariate output variable :
#
# .. math::
#
# Y = \model(\inputRV)
#
# We want to estimate the probability :math:`P_f` of the output variable to be greater than a
# prescribed threshold :math:`s=10` : this is the failure event.
# This probability is simply expressed for a continuous random vector :math:`\inputRV` as:
#
# .. math::
# :label: PfDef
#
# P_f = \Prob{Y \geq s} = \int_{\set{D}} \mathbf{1}_{\set{D}}(x) \pdf d\vect{x}
#
# where:
#
# .. math::
#
# \set{D} = \{ (x_1, x_2) \in [0,+\infty[ \times \Rset \, | \, \model(x_1, x_2) \geq s \}
#
# is the failure domain and :math:`\inputMeasure` is the probability density function (PDF)
# of :math:`\inputRV`.
# %%
# We first define random vectors
# and the failure event associated to the output random variable.
vector_X = ot.RandomVector(dist_X)
vector_Y = ot.CompositeRandomVector(g, vector_X)
s = 10.0
event = ot.ThresholdEvent(vector_Y, ot.Greater(), s)
# %%
# The boundary of the failure domain can easily be represented as it is a branch of an hyperbole: the
# boundary is the graph of the function defined from :math:`\Rset` into :math:`\Rset` by:
#
# .. math::
# :label: defH
#
# h : x_1 \mapsto x_2 = \frac{s}{x_1}
#
# The boundary of the failure domain is also the isoline of the model :math:`\model` associated to the
# level :math:`s`:
#
# .. math::
#
# \partial \set{D} = \{(x_1, x_2)\, |\, \model(x_1, x_2) = s \}
#
# We can draw it with the `draw` method of the function :math:`\model`.
# %%
nb_points = 101
graph_g = g.draw([0.0, -10.0], [20.0, 10.0], [nb_points] * 2)
draw_boundary = graph_g.getDrawable(0)
draw_boundary.setLevels([s])
draw_boundary.setLegend(r"Boundary $\partial \mathcal{D}$")
graph_g.setDrawables([draw_boundary])
# %%
texts = [r" $\mathcal{D} = \{(x_1, x_2)\, |\, g(x_1, x_2) \geq 10 \}$"]
text_graph = ot.Text([[10.0, 3.0]], texts)
text_graph.setTextSize(1)
text_graph.setColor("black")
graph_g.add(text_graph)
# %%
graph_g.setTitle("Failure domain in the physical space")
graph_g.setXTitle(r"$x_1$")
graph_g.setYTitle(r"$x_2$")
graph_g.setLegendPosition("topright")
view = otv.View(graph_g, square_axes=True)
# %%
# We can superimpose the event boundary with the bivariate PDF insolines of the input distribution:
draw_boundary.setColor("black")
graph_PDF.add(draw_boundary)
graph_PDF.setLegendPosition("lower right")
view = otv.View(graph_PDF, square_axes=True)
# %%
# From the previous figure, we observe that in the failure domain, the PDF takes small
# (and even very small) values.
# Consequently the failure probability :math:`P_f` is also expected to be small.
# The FORM/SORM methods estimate the failure probability.
#
# %%
# The FORM/SORM approximations
# ----------------------------
#
# The basic steps of the FORM and SORM algorithms are:
#
# - use an isoprobabilistic transformation to map the input random vector into the standard space;
# - find the design point which is the nearest point to the origin in the standard space;
# - estimate the probability.
#
# %%
# Isoprobabilistic transformation
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# The interest of the isoprobabilistic transformation is the rotational
# invariance of the distribution in the standard space. This property reduces the dimension
# of the problem to 1. See :ref:`Isoprobabilistic transformation <isoprobabilistic_transformation>` for more theoretical details.
#
# OpenTURNS has several isoprobabilistic transformations, depending on the distribution of the input random vector:
#
# - the Nataf transformation is used if the input distribution has a normal copula,
# - the Generalized Nataf transformation is used if the input distribution has an elliptical copula,
# - the Rosenblatt transformation is used in any other cases.
#
# The Nataf and Rosenblatt transformations map the input random vector into a vector that follows a
# normal distribution with zero mean and unit variance. The Generalized Nataf transformation maps the
# input random vector into a vector that follows the standard elliptical distribution associated to the
# elliptical copula of the input distribution.
#
# In this example, the input distribution is not elliptical so the isoprobabilistic transformation is the
# Rosenblatt transformation.
#
print("Is Elliptical ? ", dist_X.isElliptical())
# %%
# The Rosenblatt transformation :math:`T` is defined by:
#
# .. math::
# :label: defT
#
# T : \vect{x} \mapsto \vect{z}
#
# such that the random vector :math:`\standardRV = T(\inputRV)` follows a bivariate normal distribution
# with zero mean and unit variance. It follows that the components :math:`Z_1` and
# :math:`Z_2` are independent.
#
# We detail the Rosenblatt transform in this simple case where the input random vector :math:`\inputRV`
# has independent components. Then, the Rosenblatt transform is defined by:
#
# .. math::
#
# z_i = \Phi^{-1} \circ F_i(x_i)
#
# where :math:`F_i` is the cumulative distribution function (CDF) of :math:`X_i` and
# :math:`\Phi` the CDF of the univariate normal distribution with zero mean and unit variance.
# Note that in this example, :math:`\Phi^{-1} \circ F_2 = I_d` as :math:`F_2 = \Phi`.
# The isoprobabilistic transform and its inverse are methods of the distribution:
transformation = dist_X.getIsoProbabilisticTransformation()
inverse_transformation = dist_X.getInverseIsoProbabilisticTransformation()
# %%
# Let us detail this transformation, step by step.
# We draw a realization of the random input vector. This point is said to be in the physical space.
xi = vector_X.getRealization()
# %%
# We build `zi` the mapping of `xi` through the Rosenblatt transformation.
# The point `zi` is said to be in the standard space. Note that the second component remained unchanged.
ui = [dist_X1.computeCDF(xi[0]), dist_X2.computeCDF(xi[1])]
zi = [ot.Normal().computeQuantile(ui[0])[0], ot.Normal().computeQuantile(ui[1])[0]]
print(xi, "->", ui, "->", zi)
# %%
# We also build the isoprobabilistic transform :math:`T_1` and its inverse :math:`T_1^{-1}` for the
# first marginal:
#
# .. math::
# :label: detT1
#
# T_1 = \Phi^{-1} \circ F_1
#
transform_X1 = dist_X1.getIsoProbabilisticTransformation()
inverse_transform_X1 = dist_X1.getInverseIsoProbabilisticTransformation()
# %%
# We can implement the transformation using :math:`T_1` on the first components
# directly using :math:`T` on both components `xi`:
zi1D = [transform_X1([xi[0]])[0], xi[1]]
zi2D = transformation(xi)
# %%
# We can check the result of our experiment : we observe the results are the same.
print("zi = ", zi)
print("zi1D = ", zi1D)
print("zi2D = ", zi2D)
# %%
# The model in the standard space is defined by:
#
# .. math::
#
# \widetilde{\model} = \model \circ T^{-1}
#
# We can define it using the capacities of the composition of functions implemented in the library.
g_tilde = ot.ComposedFunction(g, inverse_transformation)
# %%
# The failure domain in the standard space is defined by:
#
# .. math::
#
# \set{\widetilde{D}} = \{ (z_1, z_2) \in [0,+\infty[ \times \Rset \, | \, \widetilde{\model}(z_1, z_2) \geq s \}
#
# and its boundary is defined by:
#
# .. math::
#
# \partial \set{\widetilde{D}} = \{ (z_1, z_2) \in [0,+\infty[ \times \Rset \, | \,
# \widetilde{\model}(z_1, z_2) = s \}
#
# %%
# We draw the graph of :math:`\widetilde{g}` in the standard space.
graph_standard_space = g_tilde.draw([0.0, 0.0], [7.0, 7.0], [101] * 2)
draw_boundary_stand_space = graph_standard_space.getDrawable(0)
draw_boundary_stand_space.setLevels([s])
draw_boundary_stand_space.setLegend(r"Boundary $\partial \mathcal{\tilde{D}}$")
graph_standard_space.setDrawables([draw_boundary_stand_space])
graph_standard_space.setXTitle(r"$z_1$")
graph_standard_space.setYTitle(r"$z_2$")
graph_standard_space.setTitle("Failure domain in the standard space")
# %%
# We add some annotations
texts = [r"$\mathcal{\tilde{D}} = \{(z_1, z_2)\, |\, \tilde{g}(z_1, z_2) \geq 10 \}$"]
text_graph = ot.Text([[4.0, 3.0]], texts)
text_graph.setTextSize(1)
text_graph.setColor("black")
graph_standard_space.add(text_graph)
graph_standard_space.setLegendPosition("topright")
view = otv.View(graph_standard_space, square_axes=True)
# %%
# The design point
# ^^^^^^^^^^^^^^^^
#
# Due to the spherical distribution in the standard space, the area that contributes
# the most to the integral defining the probability is the vicinity of the closest point
# of the failure domain to the origin of the standard space.
# Then the second step of the method is to find this point, *the design point*, through a
# minimization problem under constraints.
# %%
# We configure the Cobyla solver that we use for the optimization :
solver = ot.Cobyla()
solver.setMaximumIterationNumber(10000)
solver.setMaximumAbsoluteError(1.0e-3)
solver.setMaximumRelativeError(1.0e-3)
solver.setMaximumResidualError(1.0e-3)
solver.setMaximumConstraintError(1.0e-3)
# %%
# We build the FORM algorithm with its basic constructor. The starting point for the optimization
# algorithm is the mean of the input distribution.
solver.setStartingPoint(dist_X.getMean())
algo_FORM = ot.FORM(solver, event)
# %%
# We are ready to run the algorithm and store the result.
algo_FORM.run()
result = algo_FORM.getResult()
# %%
# The design point can be retrieved in both physical and standard space with respectively the
# `getPhysicalSpaceDesignPoint` and `getStandardSpaceDesignPoint` methods. We denote them respectively
# :math:`\vect{x}^*` and :math:`\vect{z}^*`.
design_point_physical_space = result.getPhysicalSpaceDesignPoint()
design_point_standard_space = result.getStandardSpaceDesignPoint()
print("Design point in physical space : ", design_point_physical_space)
print("Design point in standard space : ", design_point_standard_space)
# %%
# We can get the Hasofer index with the `getHasoferReliabilityIndex` method which is the distance of
# the design point to the origin:
beta_HL = result.getHasoferReliabilityIndex()
print("Hasofer index : ", beta_HL)
# %%
# We visualize the design point on the previous graph.
cloud = ot.Cloud([design_point_standard_space])
cloud.setColor("red")
cloud.setPointStyle("fcircle")
cloud.setLegend(r"design point $z^*$")
graph_standard_space.add(cloud)
graph_standard_space.setGrid(True)
graph_standard_space.setLegendPosition("lower right")
cc = ot.Curve(
[0.0, design_point_standard_space[0]],
[0.0, design_point_standard_space[1]],
r"$\beta_{HL}$ distance",
)
cc.setLineStyle("dashed")
cc.setColor("black")
graph_standard_space.add(cc)
graph_standard_space.setLegendPosition("topright")
view = otv.View(graph_standard_space, square_axes=True)
# %%
# The FORM approximation
# ^^^^^^^^^^^^^^^^^^^^^^
#
# The last step of the FORM algorithm is to replace the failure domain boundary by the hyperplane
# which is tangent to the failure domain at the design point in the standard space.
# To draw this hyperplane :math:`\mathcal{P}_{\vect{z}^*}`, we define the function from
# :math:`\Rset^2` to :math:`\Rset` defined by:
#
# .. math::
#
# M \rightarrow \scalarproduct{\nabla \widetilde{\model}(\vect{z}^*)}{\vect{Z^*M}}
#
# where :math:`\nabla \vect{\widetilde{\model}(\vect{z}^*)}` is the gradient of the
# function :math:`\widetilde{\model}`
# at the design point :math:`Z^*(\vect{z}^*)`.
# Then, the tangent hyperplane is the isoline associated to the zero level of the previous function :
#
# .. math::
#
# \mathcal{P}_{z^*} = \{ \vect{z} \in \Rset^2 \, | \,
# \scalarproduct{\nabla\widetilde{\model}(\vect{z}^*)}{\vect{Z^*M}} = 0\}
#
# We can use the :class:`~openturns.LinearFunction` class.
center = design_point_standard_space
grad_design_point = g_tilde.gradient(design_point_standard_space)
constant = [0.0]
linear_mat = ot.Matrix(1, 2)
linear_mat[0, 0] = grad_design_point[0, 0]
linear_mat[0, 1] = grad_design_point[1, 0]
linear_proj = ot.LinearFunction(center, constant, linear_mat)
graph_tangent = linear_proj.getMarginal(0).draw([0.0, 0.0], [7.0, 7.0], [101] * 2)
draw_tangent = graph_tangent.getDrawable(0)
draw_tangent.setLevels([0])
draw_tangent.setLegend(r"$\mathcal{\Pi}_{z^*}$ (FORM)")
draw_tangent.setColor("green")
draw_tangent.setLineStyle("dashed")
graph_standard_space.add(draw_tangent)
graph_standard_space.setLegendPosition("topright")
view = otv.View(graph_standard_space, square_axes=True)
# %%
# Depending on whether the origin of the standard space :math:`\vect{0}` belongs to the failure domain,
# the FORM probability is defined by:
#
# .. math::
#
# P_{FORM} = \begin{cases}
# E(+\beta_{HL}) & \text{ if } \vect{0} \in \set{\widetilde{D}} \\
# E(-\beta_{HL}) & \text{ otherwise.}
# \end{cases}
#
# where :math:`E(.)` is the marginal cumulative distribution function along any direction of
# the spherical distribution in the standard space. In this example, this is the normal distribution.
# So we have:
#
isOriginFail = result.getIsStandardPointOriginInFailureSpace()
normal = ot.Normal()
if isOriginFail:
pf_FORM = normal.computeCDF(beta_HL)
else:
pf_FORM = normal.computeCDF(-beta_HL)
print("FORM : Pf_FORM = ", pf_FORM)
# %%
# This failure probability is implemented but the FORM algorithm and can be obtained
# with the `getEventProbability` method. We check we have the same result.
pf = result.getEventProbability()
print("Probability of failure (FORM) Pf_FORM = ", pf)
# %%
# The SORM approximation
# ^^^^^^^^^^^^^^^^^^^^^^
#
# The SORM approximation uses the main curvatures :math:`\kappa_i^0` of the homothetic of the failure domain
# at distance 1 from the origin. These curvatures are calculated at the design point.
# They are linked to the curvatures :math:`\kappa_i` of the failure domain by:
#
# .. math::
#
# \kappa_i^0 = \beta_{HL} \kappa_i
#
# The Breitung approximation is valid for :math:`\beta_{HL} \rightarrow +\infty` and is defined by :
#
# .. math::
#
# P_{SORM, Breitung} = \begin{cases}
# E(+\beta_{HL}) \prod_{i=1}^{d-1} \dfrac{1}{\sqrt{1+\kappa_i^0}} & \text{ if }
# \vect{0} \in \set{\widetilde{D}} \\
# E(-\beta_{HL}) \prod_{i=1}^{d-1} \dfrac{1}{\sqrt{1+\kappa_i^0}} & \text{ otherwise. }
# \end{cases}
#
# and approximates the boundary by the osculating paraboloid at the design point.
#
# Note that the term :math:`\kappa_i^0` does not depend on :math:`\beta_{HL}`.
# %%
# In this example, we can easily implement the boundary of the failure domain in the
# physical space, using the function :math:`h` defined in :eq:`defH`.
#
# In the standard space, the boundary is defined by the composed function
# :math:`z_1 \mapsto h \circ T_1^{-1}(z_1)`.
failure_boundary_physical_space = ot.SymbolicFunction(["x"], ["10.0 / x"])
failure_boundary_standard_space = ot.ComposedFunction(
failure_boundary_physical_space, inverse_transform_X1
)
# %%
# We need the value of the second derivative of the failure boundary function
# at the abscissa of the design point in the standard space:
z1_star = [design_point_standard_space[0]]
dz1_star = failure_boundary_standard_space.getGradient().gradient(z1_star)
d2z1_star = failure_boundary_standard_space.getHessian().hessian(z1_star)
print("first component of the design point = ", z1_star[0])
print(
"second component of the design point = ",
failure_boundary_standard_space(z1_star)[0],
)
print(
"value of the hessian of the failure boundary at this abscissa= ",
d2z1_star[0, 0, 0],
)
# %%
# In the standard space, the osculating parabola :math:`\mathcal{P}_{\vect{z}^*}`
# at :math:`\vect{z}^*` is the graph of the function defined by:
#
# .. math::
#
# z_1 \mapsto h \circ T_1^{-1} (z_1^*) + \frac{d}{du_1} (h \circ T_1^{-1})(z_1^*) (z_1-z_1^*) +
# \frac{1}{2} \frac{d^2}{dz_1^2} (h \circ T_1^{-1})(z_1^*) (z_1-z_1^*)^2
#
z = np.linspace(1.1, 4.0, 100)
parabola = (
failure_boundary_standard_space(z1_star)[0]
+ dz1_star[0, 0] * (z - z1_star)
+ 0.5 * d2z1_star[0, 0, 0] * (z - z1_star) ** 2
)
curve_parabola = ot.Curve(z, parabola, r"$\mathcal{P}_{z^*}$ (SORM)")
curve_parabola.setLineStyle("dashed")
curve_parabola.setColor("orange")
graph_standard_space.add(curve_parabola)
graph_standard_space.setLegendPosition("topright")
view = otv.View(graph_standard_space)
# %%
# The next step is to estimate the principal curvatures of the osculating paraboloid.
#
# For any regular function :math:`\ell: \Rset \rightarrow \Rset` the curvature :math:`\kappa(x)` at the point :math:`x` in
# cartesian coordinates reads as:
#
# .. math::
#
# \kappa(x) = \frac{\ell''(x)}{(1+[\ell'(x)]^2)^{3/2}}.
#
# For the osculating parabola of concern we use the previously computed gradient and Hessian previously computed:
#
curvature = (d2z1_star[0, 0, 0]) / (1 + (dz1_star[0, 0]) ** 2) ** (3 / 2)
print("Curvature (analytic formula) = ", curvature)
# %%
# We build the SORM algorithm and run it:
solver.setStartingPoint(dist_X.getMean())
algo_SORM = ot.SORM(solver, event)
algo_SORM.run()
# %%
# The SORM result is obtained with the `getResult` method:
result_SORM = algo_SORM.getResult()
# %%
# The principal curvatures of the osculating paraboloid at the design point is obtained by the
# `getSortedCurvatures` method:
print("Curvature (library) = ", result_SORM.getSortedCurvatures()[1])
# %%
# Once the curvature is computed, there are several ways of approximating the failure probability :math:`P_f`.
# The library implements the Breitung, Hohenbichler and Tvedt estimates.
# We detail here the calculus of the Breitung approximation.
coeff = (1.0 + beta_HL * curvature) ** (-0.5)
if isOriginFail:
pf_SORM = (normal.computeCDF(beta_HL)) * coeff
else:
pf_SORM = (normal.computeCDF(-beta_HL)) * coeff
print("SORM : Pf_SORM = ", pf_SORM)
# %%
# We can compare with the different estimators:
pf_Breitung = result_SORM.getEventProbabilityBreitung()
pf_Hohenbichler = result_SORM.getEventProbabilityHohenbichler()
pf_Tvedt = result_SORM.getEventProbabilityTvedt()
print("Probability of failure (SORM Breintung) Pf = ", pf_Breitung)
print("Probability of failure (SORM Hohenbichler) Pf = ", pf_Hohenbichler)
print("Probability of failure (SORM Tvedt) Pf = ", pf_Tvedt)
# %%
# Display all figures
otv.View.ShowAll()
|