1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
"""
Non parametric Adaptive Importance Sampling (NAIS)
==================================================
"""
# %%
#
# The objective is to evaluate a probability from the Non parametric Adaptive Importance Sampling (NAIS) technique.
#
# We consider the four-branch function :math:`g : \mathbb{R}^2 \rightarrow \mathbb{R}` defined by:
#
# .. math::
# \begin{align*}
# g(\vect{X}) = \min \begin{pmatrix}5+0.1(x_1-x_2)^2-\frac{(x_1+x_2)}{\sqrt{2}}\\
# 5+0.1(x_1-x_2)^2+\frac{(x_1+x_2)}{\sqrt{2}}\\
# (x_1-x_2)+ \frac{9}{\sqrt{2}}\\
# (x_2-x_1)+ \frac{9}{\sqrt{2}}
# \end{pmatrix}
# \end{align*}
#
# and the input random vector :math:`\vect{X} = (X_1, X_2)` which follows the standard 2-dimensional Normal distribution:
#
# .. math::
# \begin{align*}
# \vect{X} \sim \mathcal{N}(\mu = [0, 0], \sigma = [1,1], corr = \mat{I}_2)
# \end{align*}
#
# We want to evaluate the probability:
#
# .. math::
# \begin{align*}
# p = \mathbb{P} ( g(\vect{X}) \leq 0 )
# \end{align*}
#
# %%
# First, import the python modules:
# %%
import openturns as ot
import openturns.viewer as otv
import math
# %%
# Create the probabilistic model :math:`Y = g(\vect{X})`
# ------------------------------------------------------
# %%
# Create the input random vector :math:`\vect{X}`:
# %%
X = ot.RandomVector(ot.Normal(2))
# %%
# Create the function :math:`g` from a :class:`~openturns.PythonFunction`:
# %%
def fourBranch(x):
x1 = x[0]
x2 = x[1]
g1 = 5 + 0.1 * (x1 - x2) ** 2 - (x1 + x2) / math.sqrt(2)
g2 = 5 + 0.1 * (x1 - x2) ** 2 + (x1 + x2) / math.sqrt(2)
g3 = (x1 - x2) + 9 / math.sqrt(2)
g4 = (x2 - x1) + 9 / math.sqrt(2)
return [min((g1, g2, g3, g4))]
g = ot.PythonFunction(2, 1, fourBranch)
# %%
# Draw the function :math:`g` to help to understand the shape of the limit state function:
# %%
graph = ot.Graph("Four Branch function", "x1", "x2", True, "upper right")
drawfunction = g.draw([-8] * 2, [8] * 2, [100] * 2)
graph.add(drawfunction)
view = otv.View(graph)
# %%
# In order to be able to get the NAIS samples used in the algorithm, it is necessary to transform the :class:`~openturns.PythonFunction` into a :class:`~openturns.MemoizeFunction`:
# %%
g = ot.MemoizeFunction(g)
# %%
# Create the output random vector :math:`Y = g(\vect{X})`:
# %%
Y = ot.CompositeRandomVector(g, X)
# %%
# Create the event :math:`\{ Y = g(\vect{X}) \leq 0 \}`
# -----------------------------------------------------
# %%
threshold = 0.0
myEvent = ot.ThresholdEvent(Y, ot.Less(), threshold)
# %%
# Evaluate the probability with the NAIS technique
# ------------------------------------------------
# %%
quantileLevel = 0.1
algo = ot.NAIS(myEvent, quantileLevel)
# %%
# In order to get all the inputs and outputs that realize the event, you have to mention it now:
# %%
algo.setKeepSample(True)
# %%
# Now you can run the algorithm.
# %%
algo.run()
result = algo.getResult()
proba = result.getProbabilityEstimate()
print("Proba NAIS = ", proba)
print("Current coefficient of variation = ", result.getCoefficientOfVariation())
# %%
# The length of the confidence interval of level :math:`95\%` is:
# %%
length95 = result.getConfidenceLength()
print("Confidence length (0.95) = ", result.getConfidenceLength())
# %%
# which enables to build the confidence interval:
# %%
print(
"Confidence interval (0.95) = [",
proba - length95 / 2,
", ",
proba + length95 / 2,
"]",
)
# %%
# You can also get the successive thresholds used by the algorithm:
# %%
levels = algo.getThresholdPerStep()
print("Levels of g = ", levels)
# %%
# Draw the NAIS samples used by the algorithm
# ---------------------------------------------
# %%
# You can get the number :math:`N_s` of steps with:
Ns = algo.getStepsNumber()
print("Number of steps= ", Ns)
# %%
# Get all the inputs where :math:`g` was evaluated at each step
list_subSamples = list()
for step in range(Ns):
list_subSamples.append(algo.getInputSample(step))
# %%
# The following graph draws each NAIS sample and the frontier :math:`g(x_1, x_2) = l_i` where :math:`l_i` is the threshold at the step :math:`i`:
# %%
graph = ot.Graph()
graph.setAxes(True)
graph.setGrid(True)
graph.setTitle("NAIS sampling: samples")
graph.setXTitle(r"$x_1$")
graph.setYTitle(r"$x_2$")
graph.setLegendPosition("lower left")
# %%
# Add all the NAIS samples:
# %%
for i in range(Ns):
cloud = ot.Cloud(list_subSamples[i])
# cloud.setPointStyle("dot")
graph.add(cloud)
col = graph.getColors()
# %%
# Add the frontiers :math:`g(x_1, x_2) = l_i` where :math:`l_i` is the threshold at the step :math:`i`:
# %%
gIsoLines = g.draw([-5] * 2, [5] * 2, [128] * 2)
dr = gIsoLines.getDrawable(0)
for i, lv in enumerate(levels):
dr.setLevels([lv])
dr.setLineStyle("solid")
dr.setLegend(r"$g(X) = $" + str(round(lv, 2)))
dr.setLineWidth(3)
dr.setColor(col[i])
graph.add(dr)
# %%
_ = otv.View(graph)
# %%
# Draw the frontiers only
# -----------------------
#
# The following graph enables to understand the progression of the algorithm:
# %%
graph = ot.Graph()
graph.setAxes(True)
graph.setGrid(True)
dr = gIsoLines.getDrawable(0)
for i, lv in enumerate(levels):
dr.setLevels([lv])
dr.setLineStyle("solid")
dr.setLegend(r"$g(X) = $" + str(round(lv, 2)))
dr.setLineWidth(3)
graph.add(dr)
graph.setColors(col)
graph.setLegendPosition("lower left")
graph.setTitle("NAIS sampling: thresholds")
graph.setXTitle(r"$x_1$")
graph.setYTitle(r"$x_2$")
_ = otv.View(graph)
# %%
# Get all the input and output points that realized the event
# -----------------------------------------------------------
# The following lines are possible only if you have mentioned that you wanted to keep samples with the method *algo.setKeepSample(True)*
# %%
select = ot.NAIS.EVENT1 # points that realize the event
step = Ns - 1 # get the working sample from last iteration
inputEventSample = algo.getInputSample(step, select)
outputEventSample = algo.getOutputSample(step, select)
print("Number of event realizations = ", inputEventSample.getSize())
# %%
# Draw them! They are all in the event space.
# %%
graph = ot.Graph()
graph.setAxes(True)
graph.setGrid(True)
cloud = ot.Cloud(inputEventSample)
cloud.setPointStyle("bullet")
graph.add(cloud)
gIsoLines = g.draw([-5] * 2, [5] * 2, [1000] * 2)
dr = gIsoLines.getDrawable(0)
dr.setLevels([0.0])
dr.setColor("red")
graph.add(dr)
_ = otv.View(graph)
otv.View.ShowAll()
|