1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
"""
Time variant system reliability problem
=======================================
"""
# %%
# %%
# The objective is to evaluate the outcrossing rate from a safe to a failure domain in a time variant reliability problem.
#
# We consider the following limit state function, defined as the difference between a degrading resistance :math:`r(t) = R - bt` and a time-varying load :math:`S(t)`:
#
# .. math::
# \begin{align*}
# g(t)= r(t) - S(t) = R - bt - S(t) \quad \forall t \in [0,T]
# \end{align*}
#
# The failure domaine is defined by:
#
# .. math::
# g(t) \leq 0
#
#
# which means that the resistance at :math:`t` is less than the stress at :math:`t`.
#
#
# We propose the following probabilistic model:
#
# - :math:`R` is the initial resistance, and :math:`R \sim \mathcal{N}(\mu_R, \sigma_R)`;
# - :math:`b` is the deterioration rate of the resistance; it is deterministic;
# - :math:`S(\omega,t)` is the time-varying stress, which is modeled by a stationary Gaussian process of mean value :math:`\mu_S`,
# standard deviation :math:`\sigma_S` and a squared exponential covariance model :math:`C(s,t)`.
#
#
# The outcrossing rate from the safe to the failure domain at instant :math:`t` is defined by:
#
# .. math::
# \nu^+(t) = \lim_{\Delta t \rightarrow 0+} \dfrac{\mathbb{P}\{ g(t) \ge 0 \cap g(t+\Delta t) \leq 0\} }{\Delta t}
#
#
# For each :math:`t`, we note the random variable :math:`Z_t = g(t)`.
#
# To evaluate :math:`\nu^+(t)`, we need to consider the bivariate random vector :math:`(Z_t, Z_{t+\Delta t})`.
#
# The event :math:`\{ g(t) \geq 0 \cap g(t+\Delta t) <0\}` writes as the intersection of both events :
#
# - :math:`\mathcal{E}_t^1 = \{ Z_t \geq 0\}` and
# - :math:`\mathcal{E}_t^2 = \{ Z_{t+\Delta t} \leq 0\}`.
#
# The objective is to evaluate:
#
# .. math::
# \mathbb{P}\{\mathcal{E}_t^1 \cap \mathcal{E}_t^2\} \quad \forall t \in [0,T]
#
# %%
# 1. Define some useful functions
# -------------------------------
# %%
# We define the bivariate random vector :math:`Y_t = (bt + S_t, b(t+\Delta t) + S_{t+\Delta t})` where :math:`S_t = S(., t)`.
# Here, :math:`Y_t` is a bivariate Normal random vector:
#
# - with mean :math:`[bt, b(t+\delta t)]` and
# - with covariance matrix :math:`\Sigma` defined by:
#
# .. math::
# \begin{align*}
# \Sigma = \left(
# \begin{array}{cc}
# C(t, t) & C(t, t+\Delta t) \\
# C(t, t+\Delta t) & C(t+\Delta t, t+\Delta t)
# \end{array}
# \right)
# \end{align*}
#
# This function buils :math:`Y_t =(Y_t^1, Y_t^2)`.
# %%
from math import sqrt
import openturns.viewer as otv
import openturns as ot
def buildNormal(b, t, mu_S, covariance, delta_t=1e-5):
sigma = ot.CovarianceMatrix(2)
sigma[0, 0] = covariance(t, t)[0, 0]
sigma[0, 1] = covariance(t, t + delta_t)[0, 0]
sigma[1, 1] = covariance(t + delta_t, t + delta_t)[0, 0]
return ot.Normal([b * t + mu_S, b * (t + delta_t) + mu_S], sigma)
# %%
# This function creates the trivariate random vector :math:`(R, Y_t^1, Y_t^2)` where :math:`R` is independent from :math:`(Y_t^1, Y_t^2)`.
# We need to create this random vector because both events :math:`\mathcal{E}_t^1` and :math:`\mathcal{E}_t^2` must be defined from the same random vector!
# %%
def buildCrossing(b, t, mu_S, covariance, R, delta_t=1e-5):
normal = buildNormal(b, t, mu_S, covariance, delta_t)
return ot.BlockIndependentDistribution([R, normal])
# %%
# This function evaluates the probability using the Monte Carlo sampling. It defines the intersection event :math:`\mathcal{E}_t^1 \cap \mathcal{E}_t^2`.
# %%
def getXEvent(b, t, mu_S, covariance, R, delta_t):
full = buildCrossing(b, t, mu_S, covariance, R, delta_t)
X = ot.RandomVector(full)
f1 = ot.SymbolicFunction(["R", "X1", "X2"], ["X1 - R"])
e1 = ot.ThresholdEvent(ot.CompositeRandomVector(f1, X), ot.Less(), 0.0)
f2 = ot.SymbolicFunction(["R", "X1", "X2"], ["X2 - R"])
e2 = ot.ThresholdEvent(ot.CompositeRandomVector(f2, X), ot.GreaterOrEqual(), 0.0)
event = ot.IntersectionEvent([e1, e2])
return X, event
# %%
def computeCrossingProbability_MonteCarlo(
b, t, mu_S, covariance, R, delta_t, n_block, n_iter, CoV
):
X, event = getXEvent(b, t, mu_S, covariance, R, delta_t)
algo = ot.ProbabilitySimulationAlgorithm(event, ot.MonteCarloExperiment())
algo.setBlockSize(n_block)
algo.setMaximumOuterSampling(n_iter)
algo.setMaximumCoefficientOfVariation(CoV)
algo.run()
return algo.getResult().getProbabilityEstimate() / delta_t
# %%
# This function evaluates the probability using the Low Discrepancy sampling.
# %%
def computeCrossingProbability_QMC(
b, t, mu_S, covariance, R, delta_t, n_block, n_iter, CoV
):
X, event = getXEvent(b, t, mu_S, covariance, R, delta_t)
algo = ot.ProbabilitySimulationAlgorithm(
event,
ot.LowDiscrepancyExperiment(ot.SobolSequence(X.getDimension()), n_block, False),
)
algo.setBlockSize(n_block)
algo.setMaximumOuterSampling(n_iter)
algo.setMaximumCoefficientOfVariation(CoV)
algo.run()
return algo.getResult().getProbabilityEstimate() / delta_t
# %%
# This function evaluates the probability using the FORM algorithm for event systems..
# %%
def computeCrossingProbability_FORM(b, t, mu_S, covariance, R, delta_t):
X, event = getXEvent(b, t, mu_S, covariance, R, delta_t)
solver = ot.SQP()
solver.setStartingPoint(X.getMean())
algo = ot.SystemFORM(solver, event)
algo.run()
return algo.getResult().getEventProbability() / delta_t
# %%
# 2. Evaluate the probability
# ---------------------------
# %%
# %%
# First, fix some parameters: :math:`(\mu_R, \sigma_R, \mu_S, \sigma_S, \Delta t, T, b)` and the covariance model which is the Squared Exponential model.
# Be careful to the parameter :math:`\Delta t` which is of great importance: if it is too small, the simulation methods have problems to converge
# because the correlation rate is too high between the instants :math:`t` and :math:`t+\Delta t`.
# We advice to take :math:`\Delta t \simeq 10^{-1}`.
#
# %%
mu_S = 3.0
sigma_S = 0.5
ll = 10
b = 0.01
mu_R = 5.0
sigma_R = 0.3
R = ot.Normal(mu_R, sigma_R)
covariance = ot.SquaredExponential([ll / sqrt(2)], [sigma_S])
t0 = 0.0
t1 = 50.0
N = 26
# Get all the time steps t
times = ot.RegularGrid(t0, (t1 - t0) / (N - 1.0), N).getVertices()
delta_t = 1e-1
# %%
# Use all the methods previously described:
#
# - Monte Carlo: values in values_MC
# - Low discrepancy suites: values in values_QMC
# - FORM: values in values_FORM
#
# %%
values_MC = list()
values_QMC = list()
values_FORM = list()
for tick in times:
values_MC.append(
computeCrossingProbability_MonteCarlo(
b, tick[0], mu_S, covariance, R, delta_t, 2**12, 2**3, 1e-2
)
)
values_QMC.append(
computeCrossingProbability_QMC(
b, tick[0], mu_S, covariance, R, delta_t, 2**12, 2**3, 1e-2
)
)
values_FORM.append(
computeCrossingProbability_FORM(b, tick[0], mu_S, covariance, R, delta_t)
)
# %%
print("Values MC = ", values_MC)
print("Values QMC = ", values_QMC)
print("Values FORM = ", values_FORM)
# %%
# Draw the graphs!
# %%
g = ot.Graph()
g.setAxes(True)
g.setGrid(True)
c = ot.Curve(times, [[p] for p in values_MC])
g.add(c)
c = ot.Curve(times, [[p] for p in values_QMC])
g.add(c)
c = ot.Curve(times, [[p] for p in values_FORM])
g.add(c)
g.setLegends(["MC", "QMC", "FORM"])
g.setLegendPosition("upper left")
g.setXTitle("t")
g.setYTitle("Outcrossing rate")
view = otv.View(g)
# %%
# Display all the figures
view.ShowAll()
|