File: plot_probability_simulation_parametrization.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (119 lines) | stat: -rw-r--r-- 2,325 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
Specify a simulation algorithm
==============================
"""

# %%
# In this example we are going to parameterize a simulation algorithm:
#
#  - parameters linked to the number of points generated
#  - the precision of the probability estimator
#  - the sample storage strategy
#  - using callbacks to monitor progress and stopping criteria.
#

# %%
import openturns as ot


# %%
# Create the joint distribution of the parameters.

# %%
distribution_R = ot.LogNormalMuSigma(300.0, 30.0, 0.0).getDistribution()
distribution_F = ot.Normal(75e3, 5e3)
marginals = [distribution_R, distribution_F]
distribution = ot.JointDistribution(marginals)

# %%
# Create the model.

# %%
model = ot.SymbolicFunction(["R", "F"], ["R-F/(pi_*100.0)"])

# %%
# Create the event whose probability we want to estimate.

# %%
vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
event = ot.ThresholdEvent(G, ot.Less(), 0.0)

# %%
# Create a Monte Carlo algorithm.

# %%
experiment = ot.MonteCarloExperiment()
algo = ot.ProbabilitySimulationAlgorithm(event, experiment)

# %%
# Criteria 1: Define the Maximum Coefficient of variation of the probability estimator.

# %%
algo.setMaximumCoefficientOfVariation(0.05)

# %%
# Criteria 2: Define the number of iterations of the simulation.

# %%
algo.setMaximumOuterSampling(int(1e4))

# %%
# The block size parameter represents the number of samples evaluated per iteration, useful for parallelization.

# %%
algo.setBlockSize(2)

# %%
# HistoryStrategy to store the values of the probability used to draw the convergence graph.

# %%
# Null strategy
algo.setConvergenceStrategy(ot.Null())

# Full strategy
algo.setConvergenceStrategy(ot.Full())

# Compact strategy: N points
N = 1000
algo.setConvergenceStrategy(ot.Compact(N))


# %%
# Use a callback to display the progress every 10%.


# %%
def progress(p):
    if p >= progress.t:
        progress.t += 10.0
        print("progress=", p, "%")
    return False


progress.t = 10.0
algo.setProgressCallback(progress)


# %%
# Use a callback to stop the simulation.


# %%
def stop():
    # here we never stop, but we could
    return False


algo.setStopCallback(stop)

# %%
algo.run()

# %%
# Retrieve results.

# %%
result = algo.getResult()
probability = result.getProbabilityEstimate()
print("Pf=", probability)