1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
"""
Exploitation of simulation algorithm results
============================================
"""
# %%
# In this example we are going to retrieve all the results proposed by probability simulation algorithms:
#
# - the probability estimate
# - the estimator variance
# - the confidence interval
# - the convergence graph of the estimator
# - the stored input and output numerical samples
# - importance factors
# %%
import openturns as ot
import openturns.viewer as otv
# %%
# Create the joint distribution of the parameters.
distribution_R = ot.LogNormalMuSigma(300.0, 30.0, 0.0).getDistribution()
distribution_F = ot.Normal(75e3, 5e3)
marginals = [distribution_R, distribution_F]
distribution = ot.JointDistribution(marginals)
# %%
# Create the model.
model = ot.SymbolicFunction(["R", "F"], ["R-F/(pi_*100.0)"])
# %%
modelCallNumberBefore = model.getEvaluationCallsNumber()
modelGradientCallNumberBefore = model.getGradientCallsNumber()
modelHessianCallNumberBefore = model.getHessianCallsNumber()
# %%
# To have access to the input and output samples after the simulation, activate the History mechanism.
# %%
model = ot.MemoizeFunction(model)
# %%
# Remove all the values stored in the history mechanism.
# Care : it is done regardless the status of the History mechanism.
# %%
model.clearHistory()
# %%
# Create the event whose probability we want to estimate.
# %%
vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
event = ot.ThresholdEvent(G, ot.Less(), 0.0)
# %%
# Create a Monte Carlo algorithm.
# %%
experiment = ot.MonteCarloExperiment()
algo = ot.ProbabilitySimulationAlgorithm(event, experiment)
algo.setMaximumCoefficientOfVariation(0.1)
algo.setMaximumStandardDeviation(0.001)
algo.setMaximumOuterSampling(int(1e4))
# %%
# Define the HistoryStrategy to store the values of :math:`P_n` and :math:`\sigma_n` used ot draw the convergence graph.
# Compact strategy : N points
# %%
N = 1000
algo.setConvergenceStrategy(ot.Compact(N))
algo.run()
# %%
# Retrieve result structure.
# %%
result = algo.getResult()
# %%
# Display the simulation event probability.
# %%
result.getProbabilityEstimate()
# %%
# Criteria 3 : Display the Standard Deviation of the estimator
result.getStandardDeviation()
# %%
# Display the variance of the simulation probability estimator.
# %%
result.getVarianceEstimate()
# %%
# Criteria 2 : Display the number of iterations of the simulation
result.getOuterSampling()
# %%
# Display the total number of evaluations of the model
result.getOuterSampling() * result.getBlockSize()
# %%
# Save the number of calls to the model, its gradient and hessian done so far.
# %%
modelCallNumberAfter = model.getEvaluationCallsNumber()
modelGradientCallNumberAfter = model.getGradientCallsNumber()
modelHessianCallNumberAfter = model.getHessianCallsNumber()
# %%
# Display the number of iterations executed and the number of evaluations of the model.
# %%
modelCallNumberAfter - modelCallNumberBefore
# %%
# Get the mean point in event domain care : only for Monte Carlo and LHS sampling methods.
# %%
result.getMeanPointInEventDomain()
# %%
# Get the associated importance factors care : only for Monte Carlo and LHS sampling methods.
# %%
result.getImportanceFactors()
# %%
graph = result.drawImportanceFactors()
view = otv.View(graph)
# %%
# Display the confidence interval length centered around the MonteCarlo probability. The confidence interval is
#
# .. math::
# IC = [\tilde{p} - 0.5 \ell, \tilde{p} + 0.5 \ell]
#
#
# with level 0.95, where :math:`\tilde{p}` is the estimated probability and :math:`\ell` is the confidence interval length.
# %%
probability = result.getProbabilityEstimate()
length95 = result.getConfidenceLength(0.95)
print("0.95 Confidence Interval length = ", length95)
print(
"IC at 0.95 = [",
probability - 0.5 * length95,
"; ",
probability + 0.5 * length95,
"]",
)
# %%
# Draw the convergence graph and the confidence interval of level alpha. By default, alpha = 0.95.
# %%
alpha = 0.90
graph = algo.drawProbabilityConvergence(alpha)
view = otv.View(graph)
# %%
# Get the numerical samples of the input and output random vectors stored according to the History Strategy specified and used to evaluate the probability estimator and its variance.
# %%
inputSampleStored = model.getInputHistory()
outputSampleStored = model.getOutputHistory()
inputSampleStored
# %%
# Get the values of the estimator and its variance stored according to the History Strategy specified and used to draw the convergence graph.
# %%
estimator_probability_sample = algo.getConvergenceStrategy().getSample()[0]
estimator_variance_sample = algo.getConvergenceStrategy().getSample()[1]
print(estimator_probability_sample, estimator_variance_sample)
# %%
otv.View.ShowAll()
|