File: plot_subset_sampling.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (198 lines) | stat: -rw-r--r-- 5,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""
Subset Sampling
===============
"""

# %%
#
# The objective is to evaluate a probability from the Subset sampling technique.
#
# We consider the function :math:`g : \mathbb{R}^2 \rightarrow \mathbb{R}` defined by:
#
# .. math::
#   \begin{align*}
#   g(X)= 20-(x_1-x_2)^2-8(x_1+x_2-4)^3
#   \end{align*}
#
# and the input random vector :math:`X = (X_1, X_2)` which follows a Normal distribution with independent components,
# and identical marginals with 0.25 mean and unit variance:
#
# .. math::
#   \begin{align*}
#   X \sim  \mathcal{N}(\mu = [0.25, 0.25], \sigma = [1,1], cor = I_2)
#   \end{align*}
#
# We want to evaluate the probability:
#
# .. math::
#   \begin{align*}
#   p = \mathbb{P} \{ g(X) \leq 0 \}
#   \end{align*}
#

# %%
# First, import the python modules:

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# Create the probabilistic model :math:`Y = g(X)`
# -----------------------------------------------

# %%
# Create the input random vector :math:`X`:
X = ot.RandomVector(ot.Normal([0.25] * 2, [1] * 2, ot.IdentityMatrix(2)))

# %%
# Create the function :math:`g`:
g = ot.SymbolicFunction(["x1", "x2"], ["20-(x1-x2)^2-8*(x1+x2-4)^3"])
print("function g: ", g)

# %%
# Create the output random vector :math:`Y = g(X)`:
Y = ot.CompositeRandomVector(g, X)

# %%
# Create the event :math:`\{ Y = g(X) \leq 0 \}`
# ----------------------------------------------
event = ot.ThresholdEvent(Y, ot.Less(), 0.0)

# %%
# Evaluate the probability with the subset sampling technique
# -----------------------------------------------------------

# %%
algo = ot.SubsetSampling(event)

# %%
# In order to get all the inputs and outputs that realize the event, you have to mention it now:
algo.setKeepSample(True)

# %%
# Now you can run the algorithm!
algo.run()

# %%
result = algo.getResult()
proba = result.getProbabilityEstimate()
print("Proba Subset = ", proba)
print("Current coefficient of variation = ", result.getCoefficientOfVariation())

# %%
# The length of the confidence interval of level :math:`95\%` is:
length95 = result.getConfidenceLength()
print("Confidence length (0.95) = ", result.getConfidenceLength())

# %%
# which enables to build the confidence interval:
print(
    "Confidence interval (0.95) = [",
    proba - length95 / 2,
    ", ",
    proba + length95 / 2,
    "]",
)

# %%
# You can also get the successive thresholds used by the algorithm:
levels = algo.getThresholdPerStep()
print("Levels of g = ", levels)

# %%
# Draw the subset samples used by the algorithm
# ---------------------------------------------

# %%
# You can get the number :math:`N_s` of steps with:
Ns = algo.getStepsNumber()
print("Number of steps= ", Ns)

# %%
# Get all the inputs where :math:`g` was evaluated at each step
list_subSamples = list()
for step in range(Ns):
    list_subSamples.append(algo.getInputSample(step))

# %%
# The following graph draws each subset sample and the frontier :math:`g(x_1, x_2) = l_i` where :math:`l_i` is the threshold at the step :math:`i`:
graph = ot.Graph()
graph.setAxes(True)
graph.setGrid(True)
graph.setXTitle(r"$x_1$")
graph.setYTitle(r"$x_2$")

# %%
# Add all the subset samples:
for i in range(Ns):
    cloud = ot.Cloud(list_subSamples[i])
    cloud.setPointStyle("dot")
    graph.add(cloud)

# %%
# Add the frontiers :math:`g(x_1, x_2) = l_i` where :math:`l_i` is the threshold at the step :math:`i`:
gIsoLines = g.draw([-3] * 2, [5] * 2, [128] * 2)
dr = gIsoLines.getDrawable(0)
dr.setColor("black")
for i in range(levels.getSize()):
    dr.setLevels([levels[i]])
    dr.setLegend(r"$g(X) = $" + str(round(levels[i], 2)))
    graph.add(dr)

# %%
_ = otv.View(graph)

# %%
# Draw the frontiers only
# -----------------------

# %%
# The following graph enables to understand the progression of the algorithm:
graph = ot.Graph()
graph.setAxes(True)
graph.setGrid(True)
dr = gIsoLines.getDrawable(0)
colors = ot.Drawable().BuildDefaultPalette(len(levels))
for i in range(levels.getSize()):
    dr.setLevels([levels[i]])
    dr.setLegend(r"$g(X) = $" + str(round(levels[i], 2)))
    dr.setColor(colors[i])
    graph.add(dr)

graph.setLegendPosition("lower left")
graph.setTitle("Subset sampling: thresholds")
graph.setXTitle(r"$x_1$")
graph.setYTitle(r"$x_2$")

_ = otv.View(graph)

# %%
# Get all the input and output points that realized the event
# -----------------------------------------------------------

# %%
# The following lines are possible only if you have mentioned that you wanted to keep samples with the method *algo.setKeepSample(True)*
select = ot.SubsetSampling.EVENT1  # points that realize the event
step = Ns - 1  # get the working sample from last iteration
inputEventSample = algo.getInputSample(step, select)
outputEventSample = algo.getOutputSample(step, select)
print("Number of event realizations = ", inputEventSample.getSize())

# %%
# Draw them! They are all in the event space.
graph = ot.Graph()
graph.setAxes(True)
graph.setGrid(True)
cloud = ot.Cloud(inputEventSample)
cloud.setPointStyle("dot")
graph.add(cloud)
gIsoLines = g.draw([-3] * 2, [5] * 2, [1000] * 2)
dr = gIsoLines.getDrawable(0)
dr.setLevels([0.0])
dr.setColor("red")
graph.add(dr)
_ = otv.View(graph)

# %%
otv.View.ShowAll()