1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
"""
The HSIC sensitivity indices: the Ishigami model
================================================
"""
import openturns as ot
import openturns.viewer as otv
from openturns.usecases import ishigami_function
# %%
#
# This example is a brief overview of the HSIC sensitivity indices classes and how to call them.
# HSIC estimators rely on a reproducing kernel of a Hilbert space. We can use them to compute sensitivity
# indices. We present the methods on the :ref:`Ishigami function<use-case-ishigami>`.
# %%
# Definition of the model
# -----------------------
#
# We load the model from the usecases module.
im = ishigami_function.IshigamiModel()
# %%
# We generate an input sample of size 100 (and dimension 3).
size = 100
X = im.distribution.getSample(size)
# %%
# We compute the output by applying the Ishigami model to the input sample.
Y = im.model(X)
# %%
# Setting the covariance models
# -----------------------------
#
# The HSIC algorithms use reproducing kernels defined on Hilbert spaces to estimate independence.
# For each input variable we choose a covariance kernel.
# Here we choose a :class:`~openturns.SquaredExponential`
# kernel for all input variables.
#
# They are all stored in a list of :math:`d+1` covariance kernels where :math:`d` is the number of
# input variables. The remaining one is for the output variable.
covarianceModelCollection = []
# %%
for i in range(3):
Xi = X.getMarginal(i)
inputCovariance = ot.SquaredExponential(1)
inputCovariance.setScale(Xi.computeStandardDeviation())
covarianceModelCollection.append(inputCovariance)
# %%
# Likewise we define a covariance kernel associated to the output variable.
outputCovariance = ot.SquaredExponential(1)
outputCovariance.setScale(Y.computeStandardDeviation())
covarianceModelCollection.append(outputCovariance)
# %%
# The Global HSIC estimator
# -------------------------
#
# In this paragraph, we perform the analysis on the raw data: that is
# the global HSIC estimator.
# %%
# Choosing an estimator
# ^^^^^^^^^^^^^^^^^^^^^
#
# After having defined the covariance kernels one has to select an
# appropriate estimator for the computations.
#
# Two estimators are proposed:
#
# - an unbiased estimator through the :class:`~openturns.HSICUStat` class
# - a biased, but asymptotically unbiased, estimator through the :class:`~openturns.HSICVStat` class
#
# Beware that the conditional analysis used later cannot be performed with the unbiased estimator.
estimatorType = ot.HSICUStat()
# %%
# We now build the HSIC estimator:
globHSIC = ot.HSICEstimatorGlobalSensitivity(
covarianceModelCollection, X, Y, estimatorType
)
# %%
# We get the R2-HSIC indices:
R2HSICIndices = globHSIC.getR2HSICIndices()
print("\n Global HSIC analysis")
print("R2-HSIC Indices: ", R2HSICIndices)
# %%
# and the HSIC indices:
HSICIndices = globHSIC.getHSICIndices()
print("HSIC Indices: ", HSICIndices)
# %%
# The p-value by permutation.
pvperm = globHSIC.getPValuesPermutation()
print("p-value (permutation): ", pvperm)
# %%
# We have an asymptotic estimate of the value for this estimator.
pvas = globHSIC.getPValuesAsymptotic()
print("p-value (asymptotic): ", pvas)
# %%
# We vizualise the results.
graph1 = globHSIC.drawHSICIndices()
view1 = otv.View(graph1)
graph2 = globHSIC.drawPValuesAsymptotic()
view2 = otv.View(graph2)
graph3 = globHSIC.drawR2HSICIndices()
view3 = otv.View(graph3)
graph4 = globHSIC.drawPValuesPermutation()
view4 = otv.View(graph4)
# %%
# The Target HSIC estimator
# -------------------------
#
# We now perform the target analysis which consists in using a filter function over the
# output.
# %%
# Defining a filter function
# ^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# We define a filter function on the output variable for the target
# analysis. In this example we use the function :math:`\exp{(-d/s)}` where :math:`d` is the distance
# to a well-chosen interval.
# %%
# We first define a critical domain: in our case that is the :math:`[5,+\infty[` interval.
criticalDomain = ot.Interval(5, float("inf"))
# %%
# We have access to the distance to this domain thanks to the
# :class:`~openturns.DistanceToDomainFunction` class.
dist2criticalDomain = ot.DistanceToDomainFunction(criticalDomain)
# %%
# We define the empirical parameter values in our function from the output sample
s = 0.1 * Y.computeStandardDeviation()[0]
# %%
# We now define our filter function by composition of the parametrized function and
# the distance function.
f = ot.SymbolicFunction(["x", "s"], ["exp(-x/s)"])
phi = ot.ParametricFunction(f, [1], [s])
filterFunction = ot.ComposedFunction(phi, dist2criticalDomain)
# %%
# We modify the output covariance kernel so as to adapt it to the filtered output
Y_filtered = filterFunction(Y)
outputCovariance.setScale(Y_filtered.computeStandardDeviation())
covarianceModelCollection[-1] = outputCovariance
# %%
# We choose an unbiased estimator
estimatorType = ot.HSICUStat()
# %%
# and build the HSIC estimator
targetHSIC = ot.HSICEstimatorTargetSensitivity(
covarianceModelCollection, X, Y, estimatorType, filterFunction
)
# %%
# We get the R2-HSIC indices:
R2HSICIndices = targetHSIC.getR2HSICIndices()
print("\n Target HSIC analysis")
print("R2-HSIC Indices: ", R2HSICIndices)
# %%
# and the HSIC indices:
HSICIndices = targetHSIC.getHSICIndices()
print("HSIC Indices: ", HSICIndices)
# %%
# The p-value by permutation.
pvperm = targetHSIC.getPValuesPermutation()
print("p-value (permutation): ", pvperm)
# %%
# We have an asymptotic estimate of the value for this estimator.
pvas = targetHSIC.getPValuesAsymptotic()
print("p-value (asymptotic): ", pvas)
# %%
# We vizualise the results.
graph5 = targetHSIC.drawHSICIndices()
view5 = otv.View(graph5)
graph6 = targetHSIC.drawPValuesAsymptotic()
view6 = otv.View(graph6)
graph7 = targetHSIC.drawR2HSICIndices()
view7 = otv.View(graph7)
graph8 = targetHSIC.drawPValuesPermutation()
view8 = otv.View(graph8)
# %%
# The Conditional HSIC estimator
# ------------------------------
#
# In this last section we preprocess the input variables: that is the conditional
# analysis. To do so, one has to work with a weight function.
# Here the weight function is the filter function we used previously.
weightFunction = filterFunction
# %%
# We revert to the covariance kernel associated to the unfiltered output
outputCovariance.setScale(Y.computeStandardDeviation())
covarianceModelCollection[-1] = outputCovariance
# %%
# We have to select a biased -but asymptotically unbiased- estimator
estimatorType = ot.HSICVStat()
# %%
# We build the conditional HSIC estimator
condHSIC = ot.HSICEstimatorConditionalSensitivity(
covarianceModelCollection, X, Y, weightFunction
)
# %%
# We get the R2-HSIC indices:
R2HSICIndices = condHSIC.getR2HSICIndices()
print("\n Conditional HSIC analysis")
print("R2-HSIC Indices: ", R2HSICIndices)
# %%
# and the HSIC indices:
HSICIndices = condHSIC.getHSICIndices()
print("HSIC Indices: ", HSICIndices)
# %%
# For the conditional estimator we only have access to the p-value by permutation:
pvperm = condHSIC.getPValuesPermutation()
print("p-value (permutation): ", pvperm)
print("")
# %%
# We can vizualise the results thanks to the various drawing methods.
graph9 = condHSIC.drawHSICIndices()
view9 = otv.View(graph9)
graph10 = condHSIC.drawR2HSICIndices()
view10 = otv.View(graph10)
graph11 = condHSIC.drawPValuesPermutation()
view11 = otv.View(graph11)
# %%
otv.View.ShowAll()
|