1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
"""
Example of sensitivity analyses on the wing weight model
=========================================================
"""
# %%
#
# This example is a brief overview of the use of the most usual sensitivity analysis techniques and how to call them:
#
# - PCC: Partial Correlation Coefficients
# - PRCC: Partial Rank Correlation Coefficients
# - SRC: Standard Regression Coefficients
# - SRRC: Standard Rank Regression Coefficients
# - Pearson coefficients
# - Spearman coefficients
# - Taylor expansion importance factors
# - Sobol' indices
# - Rank-based estimation of Sobol' indices
# - HSIC : Hilbert-Schmidt Independence Criterion
#
# We present the methods on the :ref:`WingWeight function<use-case-wingweight>` and use the same notations.
# %%
# Definition of the model
# -----------------------
#
# We load the model from the usecases module.
#
#
import openturns as ot
import openturns.viewer as otv
from openturns.usecases.wingweight_function import WingWeightModel
m = WingWeightModel()
# %%
# Cross cuts of the function
# --------------------------
#
# Let's have a look on 2D cross cuts of the wing weight function.
# For each 2D cross cut, the other variables are fixed to the input distribution mean values.
# This graph allows one to have a first idea of the variations of the function in pair of dimensions.
# The colors of each contour plot are comparable.
lowerBound = m.distribution.getRange().getLowerBound()
upperBound = m.distribution.getRange().getUpperBound()
nX = ot.ResourceMap.GetAsUnsignedInteger("Evaluation-DefaultPointNumber")
description = m.distribution.getDescription()
description.add("")
m.model.setDescription(description)
m.model.setName("wing weight model")
grid = m.model.drawCrossCuts(
m.distribution.getMean(),
lowerBound,
upperBound,
[nX] * m.model.getInputDimension(),
False,
True,
176.0,
363.0,
)
grid.setTitle("")
# Get View object to manipulate the underlying figure
# Here we decide the colormap and the number of levels used for all contours
view = otv.View(grid, contour_kw={"cmap": "hsv", "levels": 55})
axes = view.getAxes()
fig = view.getFigure()
fig.set_size_inches(12, 12) # reduce the size
# Setup a large colorbar
fig.colorbar(
view.getSubviews()[1][0].getContourSets()[0], ax=axes[:-2, -1], fraction=0.3
)
# Hide unwanted axes labels
for i in range(len(axes)):
for j in range(i + 1):
if i < len(axes) - 1:
axes[i][j].xaxis.set_ticklabels([])
if j > 0:
axes[i][j].yaxis.set_ticklabels([])
fig.subplots_adjust(top=0.99, bottom=0.05, left=0.06, right=0.99)
# %%
# We can see that the variables :math:`t_c, N_z, A, W_{dg}` seem to be influent on the wing weight whereas :math:`\Lambda, \ell, q, W_p, W_{fw}` have less influence on the function.
# %%
# Data generation
# ---------------
#
# We create the input and output data for the estimation of the different sensitivity coefficients and we get the input variables description:
inputNames = m.distribution.getDescription()
size = 500
inputDesign = m.distribution.getSample(size)
outputDesign = m.model(inputDesign)
# %%
# Let's estimate the PCC, PRCC, SRC, SRRC, Pearson and Spearman coefficients, display and analyze them.
# We create a :class:`~openturns.CorrelationAnalysis` model.
corr_analysis = ot.CorrelationAnalysis(inputDesign, outputDesign)
# %%
# PCC coefficients
# ----------------
# We compute here PCC coefficients using the :class:`~openturns.CorrelationAnalysis`.
# %%
pcc_indices = corr_analysis.computePCC()
print(pcc_indices)
# %%
#
# %%
graph = ot.SobolIndicesAlgorithm.DrawCorrelationCoefficients(
pcc_indices, inputNames, "PCC coefficients - Wing weight"
)
view = otv.View(graph)
# %%
# PRCC coefficients
# -----------------
# We compute here PRCC coefficients using the :class:`~openturns.CorrelationAnalysis`.
# %%
prcc_indices = corr_analysis.computePRCC()
print(prcc_indices)
# %%
graph = ot.SobolIndicesAlgorithm.DrawCorrelationCoefficients(
prcc_indices, inputNames, "PRCC coefficients - Wing weight"
)
view = otv.View(graph)
# %%
# SRC coefficients
# -------------------
# We compute here SRC coefficients using the :class:`~openturns.CorrelationAnalysis`.
# %%
src_indices = corr_analysis.computeSRC()
print(src_indices)
# %%
graph = ot.SobolIndicesAlgorithm.DrawCorrelationCoefficients(
src_indices, inputNames, "SRC coefficients - Wing weight"
)
view = otv.View(graph)
# %%
# Normalized squared SRC coefficients (coefficients are made to sum to 1) :
# %%
squared_src_indices = corr_analysis.computeSquaredSRC(True)
print(squared_src_indices)
# %%
# And their associated graph:
# %%
graph = ot.SobolIndicesAlgorithm.DrawCorrelationCoefficients(
squared_src_indices, inputNames, "Squared SRC coefficients - Wing weight"
)
view = otv.View(graph)
# %%
#
# %%
# SRRC coefficients
# --------------------
# We compute here SRRC coefficients using the :class:`~openturns.CorrelationAnalysis`.
# %%
srrc_indices = corr_analysis.computeSRRC()
print(srrc_indices)
# %%
graph = ot.SobolIndicesAlgorithm.DrawCorrelationCoefficients(
srrc_indices, inputNames, "SRRC coefficients - Wing weight"
)
view = otv.View(graph)
# %%
# Pearson coefficients
# -----------------------
# We compute here the Pearson :math:`\rho` coefficients using the :class:`~openturns.CorrelationAnalysis`.
# %%
pearson_correlation = corr_analysis.computeLinearCorrelation()
print(pearson_correlation)
# %%
title_pearson_graph = "Pearson correlation coefficients - Wing weight"
graph = ot.SobolIndicesAlgorithm.DrawCorrelationCoefficients(
pearson_correlation, inputNames, title_pearson_graph
)
view = otv.View(graph)
# %%
# Spearman coefficients
# -----------------------
# We compute here the Spearman :math:`\rho_s` coefficients using the :class:`~openturns.CorrelationAnalysis`.
# %%
spearman_correlation = corr_analysis.computeSpearmanCorrelation()
print(spearman_correlation)
# %%
title_spearman_graph = "Spearman correlation coefficients - Wing weight"
graph = ot.SobolIndicesAlgorithm.DrawCorrelationCoefficients(
spearman_correlation, inputNames, title_spearman_graph
)
view = otv.View(graph)
# %%
#
# The different computed correlation estimators show that the variables :math:`S_w, A, N_z, t_c` seem to be the most correlated with the wing weight in absolute value.
# Pearson and Spearman coefficients do not reveal any linear nor monotonic correlation as no coefficients are equal to +/- 1.
# Coefficients about :math:`t_c` are negative revealing a negative correlation with the wing weight, that is consistent with the model expression.
# %%
# Taylor expansion importance factors
# -----------------------------------
# We compute here the Taylor expansion importance factors using :class:`~openturns.TaylorExpansionMoments`.
# %%
# %%
# We create a distribution-based RandomVector.
X = ot.RandomVector(m.distribution)
# %%
# We create a composite RandomVector Y from X and m.model.
Y = ot.CompositeRandomVector(m.model, X)
# %%
# We create a Taylor expansion method to approximate moments.
taylor = ot.TaylorExpansionMoments(Y)
# %%
# We get the importance factors.
print(taylor.getImportanceFactors())
# %%
# We draw the importance factors
graph = taylor.drawImportanceFactors()
graph.setTitle("Taylor expansion imporfance factors - Wing weight")
view = otv.View(graph)
# %%
#
# The Taylor expansion importance factors is consistent with the previous estimators as :math:`S_w, A, N_z, t_c` seem to be the most influent variables.
# To analyze the relevance of the previous indices, a Sobol' analysis is now carried out.
# %%
# Sobol' indices
# --------------
# We compute the Sobol' indices from both sampling approach and Polynomial Chaos Expansion.
# %%
sizeSobol = 1000
sie = ot.SobolIndicesExperiment(m.distribution, sizeSobol)
inputDesignSobol = sie.generate()
inputNames = m.distribution.getDescription()
inputDesignSobol.setDescription(inputNames)
inputDesignSobol.getSize()
# %%
# We see that 12000 function evaluations are required to estimate the first order and total Sobol' indices.
# %%
# Then, we evaluate the outputs corresponding to this design of experiments.
# %%
outputDesignSobol = m.model(inputDesignSobol)
# %%
# We estimate the Sobol' indices with the :class:`~openturns.SaltelliSensitivityAlgorithm`.
# %%
sensitivityAnalysis = ot.SaltelliSensitivityAlgorithm(
inputDesignSobol, outputDesignSobol, sizeSobol
)
# %%
# The `getFirstOrderIndices` and `getTotalOrderIndices` methods respectively return estimates of all first order and total Sobol' indices.
# %%
print("First order indices:", sensitivityAnalysis.getFirstOrderIndices())
# %%
print("Total order indices:", sensitivityAnalysis.getTotalOrderIndices())
# %%
# The `draw` method produces the following graph. The vertical bars represent the 95% confidence intervals of the estimates.
# %%
graph = sensitivityAnalysis.draw()
graph.setTitle("Sobol indices with Saltelli - wing weight")
view = otv.View(graph)
# %%
# We see that several Sobol' indices are negative, that is inconsistent with the theory. Therefore, a larger number of samples is required to get consistent indices
sizeSobol = 10000
sie = ot.SobolIndicesExperiment(m.distribution, sizeSobol)
inputDesignSobol = sie.generate()
inputNames = m.distribution.getDescription()
inputDesignSobol.setDescription(inputNames)
inputDesignSobol.getSize()
outputDesignSobol = m.model(inputDesignSobol)
sensitivityAnalysis = ot.SaltelliSensitivityAlgorithm(
inputDesignSobol, outputDesignSobol, sizeSobol
)
sensitivityAnalysis.getFirstOrderIndices()
sensitivityAnalysis.getTotalOrderIndices()
graph = sensitivityAnalysis.draw()
graph.setTitle("Sobol indices with Saltelli - wing weight")
view = otv.View(graph)
# %%
# It improves the accuracy of the estimation but, for very low indices, Saltelli scheme is not accurate since several confidence intervals provide negative lower bounds.
# %%
# Now, we estimate the Sobol' indices using Polynomial Chaos Expansion.
# We create a Functional Chaos Expansion.
sizePCE = 800
inputDesignPCE = m.distribution.getSample(sizePCE)
outputDesignPCE = m.model(inputDesignPCE)
algo = ot.FunctionalChaosAlgorithm(inputDesignPCE, outputDesignPCE, m.distribution)
algo.run()
result = algo.getResult()
# %%
# Then, we exploit the surrogate model to compute the Sobol' indices.
sensitivityAnalysis = ot.FunctionalChaosSobolIndices(result)
sensitivityAnalysis
# %%
firstOrder = [sensitivityAnalysis.getSobolIndex(i) for i in range(m.dim)]
totalOrder = [sensitivityAnalysis.getSobolTotalIndex(i) for i in range(m.dim)]
graph = ot.SobolIndicesAlgorithm.DrawSobolIndices(inputNames, firstOrder, totalOrder)
graph.setTitle("Sobol indices by Polynomial Chaos Expansion - wing weight")
view = otv.View(graph)
# %%
# Furthermore, first order Sobol' indices can also been estimated in a data-driven way using a rank-based sensitivity algorithm.
# In such a way, the estimation of sensitivity indices does not involve any surrogate model.
sizeRankSobol = 800
inputDesignRankSobol = m.distribution.getSample(sizeRankSobol)
outputDesignankSobol = m.model(inputDesignRankSobol)
myRankSobol = ot.RankSobolSensitivityAlgorithm(
inputDesignRankSobol, outputDesignankSobol
)
indicesrankSobol = myRankSobol.getFirstOrderIndices()
print("First order indices:", indicesrankSobol)
graph = myRankSobol.draw()
graph.setTitle("Sobol indices by rank-based estimation - wing weight")
view = otv.View(graph)
# %%
#
# The Sobol' indices confirm the previous analyses, in terms of ranking of the most influent variables.
# We also see that five variables have a quasi null total Sobol' indices, that indicates almost no influence on the wing weight.
# There is no discrepancy between first order and total Sobol' indices, that indicates no or very low interaction between the variables in the variance of the output.
# As the most important variables act only through decoupled first degree contributions, the hypothesis of a linear dependence between the input variables and the weight is legitimate.
# This explains why both squared SRC and Taylor give the exact same results even if the first one is based on a :math:`\mathcal{L}^2` linear approximation
# and the second one is based on a linear expansion around the mean value of the input variables.
# %%
# HSIC indices
# ------------
# %%
# We then estimate the HSIC indices using a data-driven approach.
sizeHSIC = 250
inputDesignHSIC = m.distribution.getSample(sizeHSIC)
outputDesignHSIC = m.model(inputDesignHSIC)
covarianceModelCollection = []
# %%
for i in range(m.dim):
Xi = inputDesignHSIC.getMarginal(i)
inputCovariance = ot.SquaredExponential(1)
inputCovariance.setScale(Xi.computeStandardDeviation())
covarianceModelCollection.append(inputCovariance)
# %%
# We define a covariance kernel associated to the output variable.
outputCovariance = ot.SquaredExponential(1)
outputCovariance.setScale(outputDesignHSIC.computeStandardDeviation())
covarianceModelCollection.append(outputCovariance)
# %%
# In this paragraph, we perform the analysis on the raw data: that is
# the global HSIC estimator.
estimatorType = ot.HSICUStat()
# %%
# We now build the HSIC estimator:
globHSIC = ot.HSICEstimatorGlobalSensitivity(
covarianceModelCollection, inputDesignHSIC, outputDesignHSIC, estimatorType
)
# %%
# We get the R2-HSIC indices:
R2HSICIndices = globHSIC.getR2HSICIndices()
print("\n Global HSIC analysis")
print("R2-HSIC Indices: ", R2HSICIndices)
# %%
# and the HSIC indices:
HSICIndices = globHSIC.getHSICIndices()
print("HSIC Indices: ", HSICIndices)
# %%
# The p-value by permutation.
pvperm = globHSIC.getPValuesPermutation()
print("p-value (permutation): ", pvperm)
# %%
# We have an asymptotic estimate of the value for this estimator.
pvas = globHSIC.getPValuesAsymptotic()
print("p-value (asymptotic): ", pvas)
# %%
# We vizualise the results.
graph1 = globHSIC.drawHSICIndices()
view1 = otv.View(graph1)
graph2 = globHSIC.drawPValuesAsymptotic()
view2 = otv.View(graph2)
graph3 = globHSIC.drawR2HSICIndices()
view3 = otv.View(graph3)
graph4 = globHSIC.drawPValuesPermutation()
view4 = otv.View(graph4)
# %%
# The HSIC indices go in the same way as the other estimators in terms the most influent variables.
# The variables :math:`W_{fw}, q, l, W_p` seem to be independent to the output as the corresponding p-values are high.
# We can also see that the asymptotic p-values and p-values estimated by permutation are quite similar.
# %%
otv.View.ShowAll()
|