File: plot_create_normal_process.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (82 lines) | stat: -rw-r--r-- 1,848 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Create a Gaussian process
=========================
"""

# %%
import openturns as ot
import openturns.viewer as otv

# %%
# Create a Gaussian process from a covariance model
# -------------------------------------------------
#
# In this paragraph we build a Gaussian process from its covariance model.


# %%
# We first define a covariance model :

# %%
defaultDimension = 1
# Amplitude values
amplitude = [1.0] * defaultDimension
# Scale values
scale = [1.0] * defaultDimension
# Covariance model
myModel = ot.AbsoluteExponential(scale, amplitude)

# %%
# We define a mesh,
tmin = 0.0
step = 0.1
n = 11
myTimeGrid = ot.RegularGrid(tmin, step, n)

# %%
# and create the process :
process = ot.GaussianProcess(myModel, myTimeGrid)
print(process)

# %%
# We draw the first marginal of a sample of size 6 :
sample = process.getSample(6)
graph = sample.drawMarginal(0)
graph.setTitle("First marginal of six realizations of the process")
view = otv.View(graph)


# %%
# Create a Gaussian process from spectral density
# -----------------------------------------------
#
# In this paragraph we build a Gaussian process from its spectral density.
#

# %%
# We first define a spectral model :
amplitude = [1.0, 2.0]
scale = [4.0, 5.0]
spatialCorrelation = ot.CorrelationMatrix(2)
spatialCorrelation[0, 1] = 0.8
mySpectralModel = ot.CauchyModel(scale, amplitude, spatialCorrelation)

# %%
# As usual we define a mesh,
myTimeGrid = ot.RegularGrid(0.0, 0.1, 20)

# %%
# and create the process thereafter
process = ot.SpectralGaussianProcess(mySpectralModel, myTimeGrid)
print(process)

# %%
# Eventually we draw the first marginal of a sample of size 6 :
sample = process.getSample(6)
graph = sample.drawMarginal(0)
graph.setTitle("First marginal of six realizations of the process")
view = otv.View(graph)

# %%
# Display all figures
otv.View.ShowAll()