1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
"""
Compare covariance models
=========================
"""
# %%
# The main goal of this example is to briefly review the most important covariance models and compare them in terms of regularity of the trajectories.
#
# We first show how to define a covariance model, a temporal grid and a Gaussian process.
# We first consider the squared exponential covariance model and show how the trajectories are sensitive to its parameters.
# We show how to define a trend. In the final section, we compare the trajectories from exponential and Matérn covariance models.
# %%
# References
# ----------
#
# * Carl Edward Rasmussen and Christopher K. I. Williams (2006) Gaussian Processes for Machine Learning. Chapter 4: "Covariance Functions", www.GaussianProcess.org/gpml
# %%
# The anisotropic squared exponential model
# -----------------------------------------
#
# The :class:`~openturns.SquaredExponential` class allows one to define covariance models:
#
# * :math:`\sigma\in\mathbb{R}` is the amplitude parameter,
# * :math:`\boldsymbol{\theta}\in\mathbb{R}^d` is the scale.
# %%
import openturns.viewer as otv
import openturns as ot
import matplotlib.pyplot as plt
# %%
# Amplitude values
amplitude = [3.5]
# Scale values
scale = [1.5]
# Covariance model
myModel = ot.SquaredExponential(scale, amplitude)
# %%
# Gaussian processes
# ------------------
#
# In order to create a :class:`~openturns.GaussianProcess`, we must have:
#
# * a covariance model,
# * a grid.
#
# Optionnally, we can define a trend (we will see that later in the example). By default, the trend is zero.
#
# We consider the domain :math:`\mathcal{D}=[0,10]`. We discretize this domain with 100 cells (which corresponds to 101 nodes), with steps equal to 0.1 starting from 0:
#
# .. math::
# (x_0=x_{min}=0,\:x_1=0.1,\:\ldots,\:x_n=x_{max}=10).
#
# %%
xmin = 0.0
step = 0.1
n = 100
myTimeGrid = ot.RegularGrid(xmin, step, n + 1)
graph = myTimeGrid.draw()
graph.setTitle("Regular grid")
view = otv.View(graph)
# %%
# Then we create the Gaussian process (by default the trend is zero).
# %%
process = ot.GaussianProcess(myModel, myTimeGrid)
# %%
# Then we generate 10 trajectores with the `getSample` method. This trajectories are in a :class:`~openturns.ProcessSample`.
# %%
nbTrajectories = 10
sample = process.getSample(nbTrajectories)
type(sample)
# %%
# We can draw the trajectories with `drawMarginal`.
# %%
graph = sample.drawMarginal(0)
graph.setTitle("amplitude=%.3f, scale=%.3f" % (amplitude[0], scale[0]))
view = otv.View(graph)
# %%
# In order to make the next examples easier, we define a function which plots a given number of trajectories from a Gaussian process based on a covariance model.
# %%
def plotCovarianceModel(myCovarianceModel, myTimeGrid, nbTrajectories):
"""Plots the given number of trajectories with given covariance model."""
process = ot.GaussianProcess(myCovarianceModel, myTimeGrid)
sample = process.getSample(nbTrajectories)
graph = sample.drawMarginal(0)
graph.setTitle("")
return graph
# %%
# The amplitude parameter sets the variance of the process. A greater amplitude increases the chances of getting larger absolute values of the process.
# %%
amplitude = [7.0]
scale = [1.5]
myModel = ot.SquaredExponential(scale, amplitude)
graph = plotCovarianceModel(myModel, myTimeGrid, 10)
graph.setTitle("amplitude=%.3f, scale=%.3f" % (amplitude[0], scale[0]))
view = otv.View(graph)
# %%
# Modifying the scale parameter is here equivalent to stretch or contract the "time" :math:`x`.
# %%
amplitude = [3.5]
scale = [0.5]
myModel = ot.SquaredExponential(scale, amplitude)
graph = plotCovarianceModel(myModel, myTimeGrid, 10)
graph.setTitle("amplitude=%.3f, scale=%.3f" % (amplitude[0], scale[0]))
view = otv.View(graph)
# %%
# Define the trend
# ----------------
#
# The trend is a deterministic function. With the :class:`~openturns.GaussianProcess` class, the associated process is the sum of a trend and a Gaussian process with zero mean.
# %%
f = ot.SymbolicFunction(["x"], ["2*x"])
fTrend = ot.TrendTransform(f, myTimeGrid)
# %%
amplitude = [3.5]
scale = [1.5]
myModel = ot.SquaredExponential(scale, amplitude)
process = ot.GaussianProcess(fTrend, myModel, myTimeGrid)
# %%
# sphinx_gallery_thumbnail_number = 5
nbTrajectories = 10
sample = process.getSample(nbTrajectories)
graph = sample.drawMarginal(0)
graph.setTitle("amplitude=%.3f, scale=%.3f" % (amplitude[0], scale[0]))
view = otv.View(graph)
# %%
# Other covariance models
# -----------------------
#
# There are other covariance models. The models which are used more often are the following:
#
# * :class:`~openturns.SquaredExponential`. The generated processes can be derivated in mean square at all orders.
# * :class:`~openturns.MaternModel`. When :math:`\nu\rightarrow+\infty`, it converges to the squared exponential model.
# This model can be derivated :math:`k` times only if :math:`k<\nu`.
# In other words, when :math:`\nu` increases, then the trajectories are more and more regular.
# The particular case :math:`\nu=1/2` is the exponential model.
# The most commonly used values are :math:`\nu=3/2` and :math:`\nu=5/2`, which produce trajectories that are, in terms of regularity,
# in between the squared exponential and the exponential models.
# * :class:`~openturns.ExponentialModel`. The associated process is continuous, but not differentiable.
#
# %%
# The Matérn and exponential models
# ---------------------------------
# %%
amplitude = [1.0]
scale = [1.0]
nu1, nu2, nu3 = 2.5, 1.5, 0.5
myModel1 = ot.MaternModel(scale, amplitude, nu1)
myModel2 = ot.MaternModel(scale, amplitude, nu2)
myModel3 = ot.MaternModel(scale, amplitude, nu3)
# %%
nbTrajectories = 10
graph1 = plotCovarianceModel(myModel1, myTimeGrid, nbTrajectories)
graph2 = plotCovarianceModel(myModel2, myTimeGrid, nbTrajectories)
graph3 = plotCovarianceModel(myModel3, myTimeGrid, nbTrajectories)
# %%
fig = plt.figure(figsize=(20, 6))
ax1 = fig.add_subplot(1, 3, 1)
_ = otv.View(graph1, figure=fig, axes=[ax1])
_ = ax1.set_title("Matern 5/2")
ax2 = fig.add_subplot(1, 3, 2)
_ = otv.View(graph2, figure=fig, axes=[ax2])
_ = ax2.set_title("Matern 3/2")
ax3 = fig.add_subplot(1, 3, 3)
_ = otv.View(graph3, figure=fig, axes=[ax3])
_ = ax3.set_title("Matern 1/2")
# %%
# We see than, when :math:`\nu` increases, then the trajectories are smoother and smoother.
# %%
myExpModel = ot.ExponentialModel(scale, amplitude)
# %%
graph = plotCovarianceModel(myExpModel, myTimeGrid, nbTrajectories)
graph.setTitle("Exponential")
view = otv.View(graph)
# %%
# We see that the exponential model produces very irregular trajectories.
otv.View.ShowAll()
|