File: plot_mix_rv_process.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (181 lines) | stat: -rw-r--r-- 5,157 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
Create a process from random vectors and processes
==================================================
"""

# %%
#
# The objective is to create a process defined from a random vector and a process.
#
# We consider the following limit state function, defined as the difference between a degrading resistance :math:`r(t) = R - bt` and a time-varying load :math:`S(t)`:
#
# .. math::
#    \begin{align*}
#    g(t)= r(t) - S(t) = R - bt - S(t)
#    \end{align*}
#
# We propose the following probabilistic model:
#
# - :math:`R` is the initial resistance, and :math:`R \sim \mathcal{N}(\mu_R, \sigma_R)`;
# - :math:`b` is the deterioration rate of the resistance; it is deterministic;
# - :math:`S(t)` is the time-varying stress, which is modeled by a stationary Gaussian process of mean value :math:`\mu_S`,
#   standard deviation :math:`\sigma_S` and a squared exponential covariance model;
# - :math:`t` is the time, varying in :math:`[0,T]`.
#

# %%
# First, import the python modules:

# %%
import openturns as ot
import openturns.viewer as otv
import math as m

# %%
# 1. Create the Gaussian process :math:`(\omega, t) \rightarrow S(\omega,t)`
# --------------------------------------------------------------------------

# %%
# Create the mesh which is a regular grid on :math:`[0,T]`, with :math:`T=50`, by step =1:

# %%
b = 0.01
t0 = 0.0
step = 1
tfin = 50
n = round((tfin - t0) / step)
myMesh = ot.RegularGrid(t0, step, n)

# %%
# Create the squared exponential covariance model:
#
# .. math::
#    C(s,t) = \sigma^2e^{-\frac{1}{2} \left( \dfrac{s-t}{l} \right)^2}
#
# where the scale parameter is :math:`l=\frac{10}{\sqrt{2}}` and the amplitude :math:`\sigma = 1`.
#

# %%
ll = 10 / m.sqrt(2)
myCovKernel = ot.SquaredExponential([ll])
print("cov model = ", myCovKernel)

# %%
# Create the Gaussian process :math:`S(t)`:

# %%
S_proc = ot.GaussianProcess(myCovKernel, myMesh)


# %%
# 2. Create the process :math:`(\omega, t) \rightarrow R(\omega)-bt`
# ------------------------------------------------------------------

# %%
# First, create the random variable :math:`R \sim \mathcal{N}(\mu_R, \sigma_R)`, with :math:`\mu_R = 5` and :math:`\sigma_R = 0.3`:

# %%
muR = 5
sigR = 0.3
R = ot.Normal(muR, sigR)

# %%
# The create the Dirac random variable :math:`B = b`:

# %%
B = ot.Dirac(b)

# %%
# Then create the process :math:`(\omega, t) \rightarrow R(\omega)-bt` using the :class:`~openturns.FunctionalBasisProcess` class
# and the functional basis :math:`\phi_1 : t \rightarrow 1` and :math:`\phi_2: -t \rightarrow t`:
#
# .. math::
#    R(\omega)-bt = R(\omega)\phi_1(t) + B(\omega) \phi_2(t)
#
# with :math:`(R,B)` independent.

# %%
const_func = ot.SymbolicFunction(["t"], ["1"])
linear_func = ot.SymbolicFunction(["t"], ["-t"])
myBasis = ot.Basis([const_func, linear_func])

coef = ot.JointDistribution([R, B])

R_proc = ot.FunctionalBasisProcess(coef, myBasis, myMesh)

# %%
# 3. Create the process :math:`Z: (\omega, t) \rightarrow R(\omega)-bt + S(\omega, t)`
# ------------------------------------------------------------------------------------

# %%
# First, aggregate both processes into one process of dimension 2: :math:`(R_{proc}, S_{proc})`

# %%
myRS_proc = ot.AggregatedProcess([R_proc, S_proc])

# %%
# Then create the spatial field function that acts only on the values of the process, keeping the mesh unchanged, using the :class:`~openturns.ValueFunction` class.
# We define the function :math:`g` on :math:`\mathbb{R}^2` by:
#
# .. math::
#    g(x,y) = x-y
#
# in order to define the spatial field function :math:`g_{dyn}` that acts on fields, defined by:
#
# .. math::
#    \forall t\in [0,T], g_{dyn}(X(\omega, t), Y(\omega, t)) = X(\omega, t) - Y(\omega, t)
#

# %%
g = ot.SymbolicFunction(["x1", "x2"], ["x1-x2"])
gDyn = ot.ValueFunction(g, myMesh)

# %%
# Now you have to create the final process :math:`Z` thanks to :math:`g_{dyn}`:

# %%
Z_proc = ot.CompositeProcess(gDyn, myRS_proc)

# %%
# 4. Draw some realizations of the process
# ----------------------------------------

# %%
N = 10
sampleZ_proc = Z_proc.getSample(N)
graph = sampleZ_proc.drawMarginal(0)
graph.setTitle(r"Some realizations of $Z(\omega, t)$")
view = otv.View(graph)

# %%
# 5. Evaluate the probability that :math:`Z(\omega, t) \in \mathcal{D}`
# ---------------------------------------------------------------------

# %%
# We define the domain :math:`\mathcal{D} = [2,4]` and the event :math:`Z(\omega, t) \in \mathcal{D}`:

# %%
domain = ot.Interval([2], [4])
print("D = ", domain)
event = ot.ProcessEvent(Z_proc, domain)

# %%
# We use the Monte Carlo sampling to evaluate the probability:

# %%
MC_algo = ot.ProbabilitySimulationAlgorithm(event)
MC_algo.setMaximumOuterSampling(1000000)
MC_algo.setBlockSize(100)
MC_algo.setMaximumCoefficientOfVariation(0.01)
MC_algo.run()

result = MC_algo.getResult()

proba = result.getProbabilityEstimate()
print("Probability = ", proba)
variance = result.getVarianceEstimate()
print("Variance Estimate = ", variance)
IC90_low = proba - result.getConfidenceLength(0.90) / 2
IC90_upp = proba + result.getConfidenceLength(0.90) / 2
print("IC (90%) = [", IC90_low, ", ", IC90_upp, "]")
view.ShowAll()