1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
"""
Gaussian Process Regression : quick-start
=========================================
"""
# %%
# Abstract
# --------
#
# In this example, we create a Gaussian Process Regression for a function which has
# scalar real inputs and outputs.
# We show how to create the learning and the validation samples.
# We show how to create the surrogate model by choosing a trend and a covariance model.
# Finally, we compute the predicted confidence interval using the conditional variance.
# %%
# Introduction
# ------------
#
# We consider the sine function:
#
# .. math::
# \model(x) = \sin(x)
#
#
# for any :math:`x\in[0,12]`.
#
# We want to create a surrogate model of this function. This is why we create a sample of :math:`n` observations of the function:
#
# .. math::
# y_i = \model(x_i)
#
#
# for :math:`i=1,...,7`, where :math:`x_i` is the i-th input and :math:`y_i` is the corresponding output.
#
# We consider the seven following inputs :
#
# ============ === === === === ===== ==== ======
# :math:`i` 1 2 3 4 5 6 7
# ============ === === === === ===== ==== ======
# :math:`x_i` 1 3 4 6 7.9 11 11.5
# ============ === === === === ===== ==== ======
#
# We are going to consider a Gaussian Process Regression surrogate model with:
#
# * a constant trend,
# * a Matern covariance model.
#
import openturns as ot
import openturns.viewer as otv
import openturns.experimental as otexp
# %%
# We begin by defining the function :math:`\model` as a symbolic function.
g = ot.SymbolicFunction(["x"], ["sin(x)"])
# %%
# Then we define the `x_train` variable which contains the inputs of the design of experiments of the training step.
# Then we compute the `y_train` corresponding outputs. The variable `n_train` is the size of the training design of experiments.
x_train = ot.Sample([[x] for x in [1.0, 3.0, 4.0, 6.0, 7.9, 11.0, 11.5]])
y_train = g(x_train)
n_train = x_train.getSize()
n_train
# %%
# In order to compare the function and its surrogate model, we use a test (i.e. validation) design of experiments made of a regular grid of 100 points from 0 to 12.
# Then we convert this grid into a :class:`~openturns.Sample` and we compute the outputs of the
# function on this sample.
xmin = 0.0
xmax = 12.0
n_test = 100
step = (xmax - xmin) / (n_test - 1)
myRegularGrid = ot.RegularGrid(xmin, step, n_test)
x_test = myRegularGrid.getVertices()
y_test = g(x_test)
# %%
# In order to observe the function and the location of the points in the input design of experiments, we define the following function which plots the data.
def plot_1d_data(x_data, y_data, type="Curve", legend=None, color=None, linestyle=None):
"""Plot the data (x_data,y_data) as a Cloud/Curve"""
if type == "Curve":
graphF = ot.Curve(x_data, y_data)
else:
graphF = ot.Cloud(x_data, y_data)
if legend is not None:
graphF.setLegend(legend)
if color is not None:
graphF.setColor(color)
if linestyle is not None:
graphF.setLineStyle(linestyle)
return graphF
# %%
# Here, we draw the model and the train sample.
graph = ot.Graph("Model and Train sample", "X", "Y", True, "")
graph.add(
plot_1d_data(x_test, y_test, legend="model", color="black", linestyle="dashed")
)
graph.add(
plot_1d_data(x_train, y_train, type="Cloud", legend="train sample", color="red")
)
graph.setLegendPosition("upper right")
view = otv.View(graph)
# %%
# Creation of the surrogate model
# -------------------------------
#
# We use the :class:`~openturns.ConstantBasisFactory` class to define the trend and the
# :class:`~openturns.MaternModel` class to define the covariance model.
# In this example, the smoothness parameter of the Matérn model is fixed to :math:`\nu=3/2` and
# we only estimate the scale and the amplitude parameters.
#
# Nevertheless, we could modify the list of the
# parameters that have to be estimated (the *active* parameters) and in particular we can add the
# estimation of :math:`\nu`: see the documentation of the method
# :meth:`~openturns.CovarianceModel.setActiveParameter` of
# the class :class:`~openturns.CovarianceModel` to get more details.
dimension = 1
basis = ot.ConstantBasisFactory(dimension).build()
covarianceModel = ot.MaternModel([1.0] * dimension, 1.5)
# %%
# The class :class:`~openturns.experimental.GaussianProcessFitter` builds the Gaussian process :math:`Y` defined by:
#
# .. math::
#
# Y(\omega, x) = \mu(x) + W(\omega, x)
#
# where:
#
# - :math:`\mu(x) = \sum_{j=1}^{b} \beta_j \varphi_j(x)` and :math:`\varphi_j: \Rset \rightarrow \Rset`
# the trend function for :math:`1 \leq j \leq b`. Here the functional basis is reduced to the constant
# function;
# - :math:`W` is a Gaussian process of dimension 1 with zero mean and a Matérn covariance model
# which covariance function is denoted by :math:`C`.
#
# The coefficients of the trend function and the active covariance model parameters are estimated by
# maximizing the *reduced* log-likelihood of the model.
fitter_algo = otexp.GaussianProcessFitter(x_train, y_train, covarianceModel, basis)
fitter_algo.run()
fitter_result = fitter_algo.getResult()
print(fitter_result)
# %%
# We can draw the trend function.
trend_func = fitter_result.getMetaModel()
g_trend = trend_func.draw(xmin, xmax, 256)
g_trend.setTitle(r"Trend function of the Gaussian process $Y$")
g_trend.setXTitle(r"$x$")
g_trend.setYTitle(r"$\mu(x)$")
view = otv.View(g_trend)
# %%
# The class :class:`~openturns.experimental.GaussianProcessRegression` is built from the Gaussian process :math:`Y` and makes
# the Gaussian process approximation :math:`\vect{Z}` interpolate the data set and is defined as:
#
# .. math::
# :label: GPRdefEx
#
# \vect{Z}(\omega, \vect{x}) = \vect{Y}(\omega, \vect{x})\, | \, \cC
#
# where :math:`\cC` is the condition :math:`\vect{Y}(\omega, \vect{x}_k) = \vect{y}_k` for
# :math:`1 \leq k \leq \sampleSize`. The Gaussian process regression surrogate model is defined by the mean of :math:`\vect{Z}`:
#
# .. math::
#
# \metaModel(\vect{x}) = \vect{\mu}(\vect{x}) + \sum_{i=1}^\sampleSize \gamma_i \mat{C}( \vect{x}, \vect{x}_i)
#
# where the :math:`\gamma_i` are called the *covariance coefficients* and :math:`C` the covariance function of the Matérn
# covariance model.
gpr_algo = otexp.GaussianProcessRegression(fitter_result)
gpr_algo.run()
gpr_result = gpr_algo.getResult()
print(gpr_result)
# %%
# We observe that the `scale` and `amplitude` parameters have been optimized by the
# :meth:`~openturns.experimental.GaussianProcessFitter.run` method, while the :math:`\nu`
# parameter has remained unchanged.
# Then we get the surrogate model with
# :meth:`~openturns.experimental.GaussianProcessFitterResult.getMetaModel` and we
# evaluate the outputs of the surrogate model on the test
# design of experiments.
# %%
gprMetamodel = gpr_result.getMetaModel()
y_test_MM = gprMetamodel(x_test)
# %%
# Now we plot Gaussian process regression surrogate model, in addition to the previous plots.
graph = ot.Graph("Gaussian process regression surrogate model", "X", "Y", True, "")
graph.add(
plot_1d_data(x_test, y_test, legend="model", color="black", linestyle="dashed")
)
graph.add(
plot_1d_data(x_train, y_train, type="Cloud", legend="train sample", color="red")
)
graph.add(plot_1d_data(x_test, y_test_MM, legend="GPR", color="blue"))
graph.setLegendPosition("upper right")
view = otv.View(graph)
# %%
# We observe that the Gaussian process regression surrogate model is interpolating. This is what is meant by
# *conditioning* a Gaussian process.
#
# We see that, when the sine function has a strong curvature between two points which are separated
# by a
# large distance (e.g. between :math:`x=4` and :math:`x=6`),
# then the Gaussian regression is not close to the function :math:`g`.
# However, when the training points are close (e.g. between :math:`x=11` and :math:`x=11.5`) or when the function is nearly
# linear (e.g. between :math:`x=8` and :math:`x=11`),
# then the Gaussian process regression is quite accurate.
# %%
# Compute confidence bounds
# -------------------------
#
# In order to assess the quality of the surrogate model, we can estimate the variance and compute a
# :math:`1-\alpha = 95\%` confidence interval associated with the conditioned Gaussian process.
#
# We denote by :math:`q_{p}` the quantile of order :math:`p` of the Gaussian distribution.
# Therefore, the confidence interval of level :math:`1-\alpha` is :math:`\left[q_{\alpha/2},q_{1-\alpha/2}\right]`.
alpha = 0.05
def computeQuantileAlpha(alpha):
bilateralCI = ot.Normal().computeBilateralConfidenceInterval(1 - alpha)
return bilateralCI.getUpperBound()[0]
quantileAlpha = computeQuantileAlpha(alpha)
print("alpha=%f" % (alpha))
print("Quantile alpha=%f" % (quantileAlpha))
# %%
# The Gaussian process regression computed on the sample :math:`(\xi_1, \dots, \xi_N)` is a Gaussian vector. It is possible to
# get the variance of each :math:`\vect{Z}_i(\omega) = \vect{Y}(\omega, \vect{\xi}_i)\, | \, \cC` for :math:`1 \leq i \leq N`
# with
# the :meth:`~openturns.experimental.GaussianProcessConditionalCovariance.getConditionalMarginalVariance` method. That method
# returns a point which is the sequence of the variances of each :math:`\vect{Z}_i(\omega)`.
# Since this is a variance, we use the square root in order to compute the
# standard deviation.
sqrt = ot.SymbolicFunction(["x"], ["sqrt(x)"])
gccc = otexp.GaussianProcessConditionalCovariance(gpr_result)
conditionalVariance = gccc.getConditionalMarginalVariance(x_test)
conditionalSigma = sqrt(conditionalVariance)
# %%
# The following figure presents the conditional standard deviation depending on :math:`x`.
graph = ot.Graph(
"Conditional standard deviation", "x", "Conditional standard deviation", True, ""
)
curve = ot.Curve(x_test, conditionalSigma)
graph.add(curve)
view = otv.View(graph)
# %%
# We now compute the bounds of the confidence interval. For this purpose we define a small function
# `computeBoundsConfidenceInterval` :
# %%
def computeBoundsConfidenceInterval(quantileAlpha):
dataLower = [
[y_test_MM[i, 0] - quantileAlpha * conditionalSigma[i, 0]]
for i in range(n_test)
]
dataUpper = [
[y_test_MM[i, 0] + quantileAlpha * conditionalSigma[i, 0]]
for i in range(n_test)
]
dataLower = ot.Sample(dataLower)
dataUpper = ot.Sample(dataUpper)
return dataLower, dataUpper
# %%
# We define two small lists to draw three different confidence intervals (defined by the alpha value) :
alphas = [0.05, 0.1, 0.2]
# three different green colors defined by HSV values
mycolors = [[120, 1.0, 1.0], [120, 1.0, 0.75], [120, 1.0, 0.5]]
# %%
# We are ready to display all the previous information and the three confidence intervals we want.
# %%
# sphinx_gallery_thumbnail_number = 5
graph = ot.Graph(
"Gaussian process regression surrogate model and confidence bounds",
"X",
"Y",
True,
"",
)
# Now we loop over the different values :
for idx, v in enumerate(alphas):
quantileAlpha = computeQuantileAlpha(v)
vLow, vUp = computeBoundsConfidenceInterval(quantileAlpha)
boundsPoly = ot.Polygon.FillBetween(x_test, vLow, vUp)
boundsPoly.setColor(
ot.Drawable.ConvertFromHSV(mycolors[idx][0], mycolors[idx][1], mycolors[idx][2])
)
boundsPoly.setLegend(" %d%% bounds" % ((1.0 - v) * 100))
graph.add(boundsPoly)
graph.add(
plot_1d_data(x_test, y_test, legend="model", color="black", linestyle="dashed")
)
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(plot_1d_data(x_test, y_test_MM, legend="GPR", color="blue"))
graph.setLegendPosition("upper right")
view = otv.View(graph)
# %%
# We see that the confidence intervals are small in the regions where two
# consecutive training points are close to each other
# (e.g. between :math:`x=11` and :math:`x=11.5`) and large when the two points
# are not (e.g. between :math:`x=8.` and :math:`x=11`) or when the curvature
# of the function is large (between :math:`x=4` and :math:`x=6`).
# %%
# Display all figures.
otv.View.ShowAll()
|