File: plot_gpr_simulate.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (201 lines) | stat: -rw-r--r-- 6,049 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
Gaussian Process Regression : generate trajectories from the metamodel
======================================================================
"""

# %%
# The main goal of this example is to show how to simulate new trajectories from a Gaussian Process Regression metamodel.

# %%
# Introduction
# ------------
#
# We consider the sine function:
#
# .. math::
#    \model(x) = \sin(x)
#
#
# for any :math:`x\in[0,12]`.
#
# We want to create a metamodel of this function. This is why we create a sample of :math:`n` observations of the function:
#
# .. math::
#    y_i = \model(x_i)
#
#
# for :math:`i=1,...,7`, where :math:`x_i` is the i-th input and :math:`y_i` is the corresponding output.
#
# We consider the seven following inputs :
#
# ============ === === === === ===== ==== ======
#  :math:`i`    1   2   3   4    5     6    7
# ============ === === === === ===== ==== ======
#  :math:`x_i`  1   3   4   6   7.9   11   11.5
# ============ === === === === ===== ==== ======
#
# We are going to consider a Gaussian Process Regression metamodel with:
#
# * a constant trend,
# * a Matern covariance model.
#
# In the :doc:`/auto_surrogate_modeling/gaussian_process_regression/plot_gpr_1d` example, we detail the estimation of this metamodel.
# Refer to it for further details: we only focus here on the simulation of new trajectories.
#
import openturns as ot
import openturns.viewer as otv
import openturns.experimental as otexp


# %%
# Creation of the metamodel
# -------------------------
#
# We define the function `g`, the training sample `(x_train, y_train)` and the test sample `(x_test, y_tst)`.

# %%
g = ot.SymbolicFunction(["x"], ["sin(x)"])

# %%
x_train = ot.Sample([[x] for x in [1.0, 3.0, 4.0, 6.0, 7.9, 11.0, 11.5]])
y_train = g(x_train)
n_train = x_train.getSize()
n_train

# %%
xmin = 0.0
xmax = 12.0
n_test = 101
step = (xmax - xmin) / (n_test - 1)
myRegularGrid = ot.RegularGrid(xmin, step, n_test)
x_test = myRegularGrid.getVertices()
y_test = g(x_test)


# %%
# In order to observe the function and the location of the points in the input design of experiments, we define the following function which plots the data.


# %%


def plot_1d_data(x_data, y_data, type="Curve", legend=None, color=None, linestyle=None):
    """Plot the data (x_data,y_data) as a Cloud/Curve"""
    if type == "Curve":
        graphF = ot.Curve(x_data, y_data)
    else:
        graphF = ot.Cloud(x_data, y_data)
    if legend is not None:
        graphF.setLegend(legend)
    if color is not None:
        graphF.setColor(color)
    if linestyle is not None:
        graphF.setLineStyle(linestyle)
    return graphF


# %%
# Here, we draw the model and the train sample.
graph = ot.Graph("Model and Train sample", "X", "Y", True, "")
graph.add(
    plot_1d_data(
        x_test, y_test, type="Curve", legend="model", color="black", linestyle="dashed"
    )
)
graph.add(
    plot_1d_data(x_train, y_train, type="Cloud", legend="train sample", color="red")
)
graph.setLegendPosition("upper right")
view = otv.View(graph)

# %%
# We use the :class:`~openturns.ConstantBasisFactory` class to define the trend and the :class:`~openturns.MaternModel` class to define the covariance model.
# This Matérn model is based on the regularity parameter :math:`\nu=3/2`.

# %%
dimension = 1
basis = ot.ConstantBasisFactory(dimension).build()
covarianceModel = ot.MaternModel([1.0] * dimension, 1.5)

# %%
# We estimate the Gaussian process :math:`Y` with the class :class:`~openturns.experimental.GaussianProcessFitter`.
fitter_algo = otexp.GaussianProcessFitter(x_train, y_train, covarianceModel, basis)
fitter_algo.run()
fitter_result = fitter_algo.getResult()
print(fitter_result)

# %%
# We observe that the `scale` and `amplitude` hyper-parameters have been optimized by the
# :meth:`~openturns.experimental.GaussianProcessFitter.run` method, while the :math:`\nu`
# parameter has remained unchanged, as expected.
#
# Then, we condition the gaussian process to make it interpolate the data set using the class
# :class:`~openturns.experimental.GaussianProcessRegression`.
gpr_algo = otexp.GaussianProcessRegression(fitter_result)
gpr_algo.run()
gpr_result = gpr_algo.getResult()
print(gpr_result)

# %%
# We get the metamodel and the predictions on the test sample.
gpr_metamodel = gpr_result.getMetaModel()
y_test_MM = gpr_metamodel(x_test)

# %%
# The following function plots the Gaussian Process Regression predictions on the test sample.
graph = ot.Graph("Gaussian process regression metamodel", "X", "Y", True, "")
graph.add(
    plot_1d_data(
        x_test, y_test, type="Curve", legend="model", color="black", linestyle="dashed"
    )
)
graph.add(
    plot_1d_data(x_train, y_train, type="Cloud", legend="train sample", color="red")
)
graph.add(
    plot_1d_data(
        x_test, y_test_MM, type="Curve", legend="GPR", color="blue", linestyle="solid"
    )
)
graph.setLegendPosition("upper right")
view = otv.View(graph)

# %%
# Simulate new trajectories
# -------------------------
#
# In order to generate new trajectories of the conditioned Gaussian process, we use the class
# :class:`~openturns.experimental.ConditionedGaussianProcess`, which provides a :class:`~openturns.Process`.
# It is created from the result of the Gaussian Process Regression algorithm.
process = otexp.ConditionedGaussianProcess(gpr_result, myRegularGrid)

# %%
# The method :meth:`~openturns.Process.getSample` method returns a :class:`~openturns.ProcessSample`.

# %%
# sphinx_gallery_thumbnail_number = 3
trajectories = process.getSample(10)
type(trajectories)
graph = trajectories.drawMarginal()
graph.add(
    plot_1d_data(
        x_test,
        y_test,
        type="Curve",
        legend="model",
        color="black",
        linestyle="dashed",
    )
)
graph.add(
    plot_1d_data(x_train, y_train, type="Cloud", legend="train sample", color="red")
)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
graph.setTitle("10 simulated trajectories")
view = otv.View(graph)

# %%
# Display all figures.
otv.View.ShowAll()